Performance Analysis of Algebraic Cascaded Convolutional Codes


Аuthors

Volkov A. S.

National Research University of Electronic Technology, 1, sq. Shokina, Moscow, Zelenograd, 124498, Russia

e-mail: leshvol@mail.ru

Abstract

This paper is dedicated to the design of a cascaded code based on non-binary algebraic convolutional codes. The relevance of the research is driven by the widespread use of error-correcting coding in modern wireless communication systems, the benefits of using a cascaded coding scheme, and the properties of non-binary algebraic convolutional codes.
The goal of this work is the theoretical estimation and simulation of the noise immunity of an algebraic convolutional code and a cascaded code with non-binary algebraic convolutional codes at the outer and inner stages, constructed based on Reed-Solomon codes over extended Galois fields. An estimation of the error probability in an AWGN channel using BPSK and 16-PSK modulation is provided.
The proposed approach makes it possible to design codes based on algebraic methods with high error-correction capabilities and estimate their theoretically achievable noise immunity. Due to the large codeword lengths, the classical binomial approach to calculating the error probability was replaced by a more accurate integral method using the incomplete beta function. The simulation accounted for the influence of interleaving between the coding stages. The results showed that using a real interleaver with finite depth (exemplified by a depth of 1000 bits) leads to a degradation in noise immunity compared to the ideal case due to burst error propagation. 
Thus, the possibility of applying algebraic methods from block code theory to estimate the noise immunity of cascaded convolutional structures is demonstrated. The simulation confirmed the correctness of the proposed methodology and revealed the dependence of the code's efficiency on the interleaver parameters. 
The research revealed that the algebraic decoder does not account for the frame redundancy and specific properties of the algebraic convolutional code. Consequently, to eliminate this shortcoming of the algebraic decoder and to incorporate the code's properties, it is necessary to synthesize a decoding method that combines the algebraic approach with the maximum likelihood method.

Keywords:

convolutional codes, decoding of convolutional codes, cascaded convolutional codes, algebraic convolutional codes, noise immunity calculation

References

  1. Kazak P. G., Shevtsov V. A. Printsipy postroyeniya energoeffektivnoy sistemy sotovoy svyazi i besprovodnogo shirokopolosnogo dostupa v Internet dlya Arktiki // Trudy MAI. – 2021. – №118. URL:  http://mai.ru//upload/iblock/b1a/qqtxa51ngp0l1of1aaljvsmw3kiuc09v/06_Kazak_SHevtsov_rus_eng_Ispravl..... DOI: 10.34759/trd-2021-118-06
  2. Bogdanov A.S., Shevtsov V.A. Trudy MAI. – 2015. – №84. URL: https://trudymai.ru/eng/published.php?ID=63136
  3. Borodin V.V., Petrakov A.M., Shevtsov V.A. Trudy MAI. – 2018. – №100. URL: https://trudymai.ru/eng/published.php?ID=93398
  4. Makarenko S. I. Pomekhozashishennost’ nazemnyh abonentskih terminalov sistemy sputnikovoy svyazi Starlink (Noise Immunity of Starlink User Terminals. Systems of Control, Communication and Security), 2023. – no. 2. – pp. 81-101 (in Russian). DOI: 10.24412/2410-9916-2023-2-81-101
  5. D. Digdarsini, D. Mishra, S. Mehta and T. V. S. Ram, "FPGA Implementation of FEC Encoder with BCH & LDPC Codes for DVB S2 System," 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 2019. – pp. 78-81.
  6. Gunderson, Adam, and Tony Tao. "X-band telecommunications design for large data volume earth observing missions." Aerospace Conference, 2010 IEEE. IEEE, 2010.
  7. D. Forni, Kaskadniye kody [Concatenated Codes], M: Mir, – 1970. – 207 p.
  8. Blokh E.L. Obobshchennyye kaskadnyye kody (Generalized concatenated codes) / E.L. Blokh, V.V. Zyablov. – M.: Svyaz', 1976. – 240 p.
  9. Blokh E.L. Lineynyye kaskadnyye kody (Linear concatenated codes)/ E.L. Blokh, V.V. Zyablov. – M.: Nauka, 1982. – 229 p.
  10. Liu Y. et al. Reed-Solomon codes for satellite communications // 2009 IITA International Conference on Control, Automation and Systems Engineering (case 2009). – IEEE, 2009. – pp. 246-249.
  11. Clark Dzh., Kein Dzh. Kodirovanie s ispravleniem oshibok v sistemakh tsifrovoi svyazi [Error-Correction Coding for Digital Communications] – M.: Radio i svyaz', 1987. – 392 p.
  12. Bleykhut R. Teoriya i praktika kodov, kontroliruyushchikh oshibki (Theory and practice of error control codes) / R. Bleykhut; [per. s angl. I.I. Grushko, V.M. Blinovskogo]; pod red. K.SH. Zigangirova. – M.: Mir, 1986. – 576 p.
  13. Gallager R. Teoriya informatsii i nadezhnaya svyaz' (Theory of information and reliable communications). – Moscow, Sovetskoe radio. – 1974. – 720 p.
  14. Johannesson R. Fundamentals of convolutional coding / R. Johannesson, K. Sh. Zigangirov. – New York: IEEE Pess, Inc, 1983. – 428 p.
  15. Volkov A.S., Kreyndelin V.B. (2024) Algorithms for encoding algebraic non-binary concatenated convolutional codes of reduced complexity. T-Comm, vol. 18, no.3, pр. 11-18. (in Russian).
  16. Volkov A., Sviridov I. Construction of Algebraic Convolutional Codes Based on Reed-Solomon Generator Polynomials // 2024 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO), Vyborg, Russian Federation. – 2024. – pp. 1-6. – doi: 10.1109/SYNCHROINFO61835.2024.10617742
  17. Fink L.M. Teoriya peredachi diskretnykh soobshchenii (Theory of discrete message transmission). – Moscow, Sovetskoe radio. – 1975. – 400 p.
  18. Berlekamp E. Algebraicheskaya teoriya kodirovaniya (Algebraic Coding Theory)/ E. Berlekamp; [perevod s angliyskogo I.I. Grushko]; pod redaktsiyey S.D. Berman. – M.: Mir, 1971. – 477 p.
  19. Sklyar B. Tsifrovaya svyaz'. Teoreticheskiye osnovy i prakticheskoye primeneniye (Digital Communications: Fundamentals and Applications)/ B. Sklyar; [per. s angl. Ye.G. Grozy, V.V. Marchenko, A.V. Nazarenko]; pod red. A.V. Nazarenko. – M.: Izdat. dom «Vil'yams», 2003. – 1104 p.
  20. Kuznetsov V.S., Volkov A.S., Solodkov A.V., Doroshenko V.A. Razrabotka sistemy sinkhronizatsii na osnove slozhnykh shirokopolosnykh signalov [Development of a synchronization system based on complex broadband signals] // T-Comm: Telecommunications and Transport. – 2020. – Vol. 14, No. 5. – P. 4-14.
  21. Kolesnik V.D. Kodirovanie pri peredache i khranenii informacii (algebraicheskaya teoriya blokovykh kodov) [Coding for information transmission and storage (algebraic theory of block codes)]. – M.: Vysshaya shkola, 2009. – 550 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2026 by MAI

Вход