Solitary deformation waves in a Kirchhoff-Love cylindrical shell made of a material with a combined nonlinearity containing a viscous fluid


Аuthors

Mogilevich L. I.1*, Popova E. V.2**, Evdokimova E. V.1***, Popov V. S.1****

1. Yuri Gagarin State Technical University of Saratov, 77, Politechnicheskaya str., Saratov, 410054, Russia
2. Saratov State University named after N. G. Chernyshevsky, 83, Astrakhanskaya str., Saratov, 410012, Russia

*e-mail: mogilevichli@gmail.com
**e-mail: elizaveta.popova.97@bk.ru
***e-mail: eev2106@mail.ru
****e-mail: vic_p@bk.ru

Abstract

This paper presents the hydroelasticity problem formulation for a Kirchhoff-Love cylindrical shell whose material obeys a generalized Hooke's law, accounting for its nonlinearity in the form of a combination of a quadratic function and a power function with exponent 3/2. The case of an infinitely extended shell filled with a viscous Newtonian fluid of constant density is studied. An asymptotic analysis of the boundary value problem of mathematical physics is carried out using the multiscale perturbation method. Considering the first (linear) approximation with respect to a small parameter of the problem, it is established that the fluid filling the shell does not affect the wave process. The profile of the longitudinal strain wave front in the shell is an arbitrary function, and the strain waves in the shell propagate at the speed of sound. Considering the problem in the second approximation, a nonlinear evolution equation is obtained, generalized Schamel–Korteweg– de Vries equation, which allows one to study nonlinear solitary hydroelastic waves of longitudinal strain in the shell. It is shown that, in the particular case of an incompressible shell material and a creeping fluid flow in the shell, this equation has an exact soliton solution. The viscous fluid filling the shell has no effect on the wave process in its walls, and the soliton velocity is higher than the speed of sound. To study the general case, a new difference scheme is proposed for converting to a discrete analog of the generalized Schamel–Korteweg–de Vries equation. This scheme is obtained using an integro-interpolation approach based on the Gröbner base construction technique. A numerical study of this equation is performed with initial conditions specified as an exact particular soliton solution. Computational experiments revealed that the velocity of solitary longitudinal deformation waves in the shell is lower than the speed of sound, and the initially excited soliton decays over time if the shell material is compressible and the inertia of the fluid motion is taken into account. 

Keywords:

cylindrical shell, combined nonlinearity, viscous fluid, hydroelasticity, deformation solitons, computational experiment

References

  1. Uglov A.L., Erofeev V.I., Smirnov A.N. Akusticheskii kontrol’ oborudovaniya pri izgotovlenii i ekspluatatsii [Acoustic control of equipment during manufacture and operation]. Moscow, Nauka Publ., 2009, 280 p.
  2. Gorshkov A.G., Medvedskii A.L., Rabinskii L.N., Tarlakovskii D.V. Volny v sploshnykh sredakh [Waves in continuous media].Moscow, Fizmatlit, 2004, 472 p.
  3. Basharina T.A., Glebov S.E., Akol’zin I.V. Trudy MAI: elektron. zhurn., 2023, no. 133. Avialable at: https://trudymai.ru/published.php?ID=177661.
  4. Gromeka I.S. O skorosti rasprostraneniya volnoobraznogo dvizheniya zhidkostei v uprugikh trubkakh [On the velocity of wave-like motion of fluids in elastic tubes]. Moscow, Publishing House of the USSR Academy of Sciences, 1952, pp. 172–183.
  5. Womersley J.R. Oscillatory motion of a viscous liquid in a thin-walled elastic tube. I. The linear approximation for long waves. Philosophical Magazine, 1955, vol. 46, pp. 199–221. URL: http://dx.doi.org/10.1080/14786440208520564.
  6. Erofeev V.I., Morozov A.N., Nikitina E.A. Trudy MAI: elektron. zhurn., 2010, no. 40. 5 p. Available at: https://trudymai.ru/published.php?ID=22861.
  7. Erofeev V.I., Mal’khanov A.O., Morozov A.N. Trudy MAI: elektron. zhurn., 2010. no. 40. Available at:  https://trudymai.ru/eng/published.php?ID=22860.
  8. Erofeev V.I., Klyueva N.V. Solitons and nonlinear periodic strain waves in rods, plates, and shells (A Review). Acoustical Physics, 2002, vol, 48, no. 6, pp. 643–655. DOI:10.1134/1.1522030.
  9. Ostrovsky L.A., Didenkulov J.N., Gurbatov S.N. Nonlinear acoustics in Nizhni Novgorod (A review). Acoustical Physics, 2005, vol. 51, no. 2, pp. 114–127. DOI:10.1134/1.1884486.
  10. Zemlyanukhin A.I., Mogilevich L.I. Nelineinye volny v tsilindricheskikh obolochkakh: solitony, simmetrii, evolyutsiya [Nonlinear waves in cylindrical shells: solitons, symmetries, evolution]. Saratov, Saratov State Technical University, 1999, 132 pp.
  11. Koren’kov A.N. Linear dispersion and solitons in a liquid-filled cylindrical shell. Technical Physics, 2000, vol. 45, no. 6, pp. 789–793. DOI 10.1134/1.1259723.
  12. Koren’kov A.N. Solitary waves on a cylinder shell with liquid. Vestnik of the St. Petersburg University: Mathematics, 2019, vol. 52, no. 1, pp. 92–101. 
  13. Ivanov S.V., Mogilevich L.I., Popov V.S. Trudy MAI: elektron. zhurn., 2019, no 105. Avialable at: https://trudymai.ru/published.php?ID=104003.
  14. Bykova T.V., Evdokimova E.V., Mogilevich L.I., Popov V.S. Trudy MAI: elektron. zhurn., 2020, no. 111. DOI 10.34759/trd-2020-111-3.
  15. Blinkov Yu.A., Mogilevich L.I., Popov V.S., Popova E.V. Computational Continuum Mechanics, 2023, vol. 16, iss. 4. pp. 430–444.
  16. Popova E.V. Trudy MAI: elektron. zhurn., 2024, no. 135. Avialable at: https://trudymai.ru/eng/published.php?ID=179680.
  17. Vol’mir A.S. Nelineinaya dinamika plastinok i obolochek [Nonlinear dynamics of plates and shells: studies. Manual for undergraduate and graduate]. Moscow, Nauka Publ., 1972. 432 p. 
  18. Lukash P.A. Osnovy nelineinoi stroitel'noi mekhaniki [Fundamentals of nonlinear structural mechanics]. Moscow, Stroyizdat, 1978, 204 p.
  19. Kauderer H. Nichtlineare Mechanik. Berlin, Springer, 1958, 684 p.
  20. Zemlyanukhin A.I., Andrianov I.V., Bochkarev A.V., Mogilevich L.I. The generalized Schamel equation in nonlinear wave dynamics of cylindrical shells. Nonlinear Dynamics, 2019, vol. 98, iss. 1. pp. 185–194. DOI 10.1007/s11071-019-05181-5
  21. Zemlyanukhin A.I., Bochkarev A.V., Andrianov I.V., Erofeev V.I. The Schamel – Ostrovsky equation in nonlinear wave dynamics of cylindrical shells. Journal of Sound and Vibration, 2021, vol. 491, art. 115752. DOI 10.1016/j.jsv.2020.115752.
  22. Loitsyanskii L.G. Mekhanika zhidkosti i gaza. Moscow, Bustard, 2003. 840 p.
  23. Nayfeh A.H. Perturbation methods. New York, Wiley, 1973, 425 p.
  24. Gerdt V.P., Blinkov Yu.A., Mozzhilkin V.V. Gröbner bases and generation of difference schemes for partial differential equations. Symmetry, Integrability and Geometry: Methods and Applications, 2006, vol. 2, art. 051. DOI 10.3842/SIGMA.2006.051.
  25. Blinkov Y.A., Gerdt V.P., Marinov K.B. Discretization of quasilinear evolution equations by computer algebra methods. Programming and Computer Software, 2017, vol. 43, iss. 2, pp. 84–89. DOI 10.1134/S0361768817020049.


Download

mai.ru — informational site MAI

Copyright © 2000-2026 by MAI

Вход