Design of CI-BCH encoder and decoder integrated circuits


Аuthors

Volkov A. S.*, Solodkov A. V.**, Zaharow I. A.***

National Research University of Electronic Technology, 1, sq. Shokina, Moscow, Zelenograd, 124498, Russia

*e-mail: leshvol@mail.ru
**e-mail: solodkov_aw@mail.ru
***e-mail: wanueschok@mail.ru

Abstract

This paper describes the development of CI-BCH (Continuously Interleaved BCH) encoder and decoder integrated circuits for high-performance data transmission systems. A Verilog description of the encoder and decoder was developed, standard-cell synthesis was performed, and the integrated circuit topology was synthesized. The key parameters of the developed integrated circuit are 30,000 and 150,000 standard cells for the encoder and decoder, respectively, a clock frequency of up to 100 MHz, and a throughput of 1.6 Gbps. It is demonstrated that the developed decoder has low hardware complexity and can be integrated into systems-on-chip (SoC).

Keywords:

CI-BCH, encoder, decoder, FEC, Verilog, standard cells, topology

References

  1. Fejjari, A., et al. (2025). A Review of Anomaly Detection in Spacecraft Telemetry Data. Applied Sciences, 15(10). DOI: 10.3390/app15105653, URL: https://www.mdpi.com/2076-3417/15/10/5653, accessed 10 October 2025. 
  2. Kozlov, I. V., Nabokov, S. A., Smirnov, A. S. Programma imitacionnogo modelirovaniya cifrovyh radioliniy peredachi dannyh (Simulation Program for Digital Radio Communication Lines). Trudy MAI (Proceedings of MAI), 45. Retrieved from https://trudymai.ru/upload/iblock/1cc/programma-imitatsionnogo-modelirovaniya-tsifrovykh-radioliniy-..., accessed 10 October 2025.
  3. Gornostayev, A. I. Mery po oslableniyu pomeh na urovne proektirovaniya izmeritelnoy sistemy kosmicheskih apparatov (Measures to Reduce Interference at the Design Level of Spacecraft Measuring Systems). Kosmicheskoe Priborostroenie (Space Instrumentation), vol. 6, no 4(42), pp. 287-302. DOI: 10.26732/j.st.2022.4.08
  4. 4.International Telecommunication Union. Handbook on Radiocommunication for Space Research (SRS). Geneva: ITU-R, 2013. 240 с.
  5. Volkov A. S., Sviridov I. A. Construction of Algebraic Convolutional Codes Based on Reed–Solomon Generator Polynomials, Proceedings of the Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO 2024), Vyborg, Russian Federation, 2024, pp. 1-6, DOI: 10.1109/SYNCHROINFO61835.2024.10617742.
  6. Bakulin M. G., Ben Rejeb T. B. K., Kreindelin V. B. et al., Issledovanie pomekhoustoichivosti sistem neortogonal’nogo mnozhestvennogo dostupa NOMA s razdeleniem po shablonam (Investigation of Noise Immunity in NOMA Systems with Pattern Division), Elektrosvyaz (Telecommunication), 2023, no. 4, pp. 11-17, DOI: 10.34832/ELSV2023.41.4.002, EDN: BNPMGG.
  7. Shevtsov V. A., Bogdanov A. S., Issledovanie sovremennykh adaptivnykh algoritmov dekodirovaniya svertochnykh kodov (Study of Modern Adaptive Algorithms for Convolutional Code Decoding), Information-Measuring and Control Systems, 2006, vol. 4, no. 11, pp. 65-67, EDN: VRPDOA.
  8. Volkov A. S., Kreindelin V. B., Algoritmy kodirovaniya algebraicheskikh nedvoichnykh kaskadnykh svertochnykh kodov umenshennoi slozhnosti (Algorithms for Encoding Algebraic Non-binary Cascaded Convolutional Codes of Reduced Complexity), T-Comm: Telecommunications and Transport, 2024, vol. 18, no. 3, pp. 11-18, DOI: 10.36724/2072-8735-2024-18-3-11-18, EDN: YWVJBK.
  9. Scholten M., Coe T., Dillard J., Chang F., Enhanced FEC for 40G/100G, Proceedings of the European Conference on Optical Communication (ECOC), Vitesse Semiconductor, 2009, 12 p.
  10. Kuznetsov V. S., Volkov A. S., Solodkov A. V., Loos V. V., Razrabotka kodeka troichnogo koda (Сodec design for ternary code), Trudy MAI (Proceedings of MAI), 2024, no. 139, URL: https://trudymai.ru/published.php?ID=183459, accessed 10 October 2025.
  11. ITU-T, Recommendation G.975.1: Forward Error Correction for High Bit-Rate DWDM Submarine Systems, Geneva, International Telecommunication Union, 2004, 52 p.
  12. Lin S., Costello D. J. Jr., Channel Codes: Classical and Modern, Cambridge, Cambridge University Press, 2009, 885 p., ISBN 978-0-521-89596-4.
  13. Scholten M., Coe T., Dillard J., Continuously-Interleaved BCH (CI-BCH) FEC delivers best in class NECG for 40G and 100G metro applications, Proceedings of the Optical Fiber Communication Conference (OFC/NFOEC 2010), Optical Society of America, 2010, Paper NTuB3.
  14. Yu F., Li M., Stojanovic N., Xie C., Xiao Z., Li L., FPGA Demonstration of Stretched Continuously Interleaved BCH Code with Low Error Floor for Short-Range Optical Transmission, Optical Fiber Communication Conference: OSA Technical Digest (online), Optica Publishing Group, 2017, Paper W1J.5, URL: https://opg.optica.org/abstract.cfm?URI=OFC-2017-W1J.5, accessed 10 October 2025.
  15. Rieger M., Application Specific Integrated Circuits (ASICs), The Electronic Design Automation Handbook, Boston, Springer, 2003, pp. 384-397, DOI: 10.1007/978-0-387-73543-6_16.
  16. Azadet K., Haratsch E. F., Kim H., Saibi F., Saunders J. H., Shaffer M., Song L., Yu M.-L., Equalization and FEC Techniques for Optical Transceivers, IEEE Journal of Solid-State Circuits, 2002, vol. 37, no. 3, pp. 317-327, DOI: 10.1109/4.987099.
  17. Volkov A. S., Solodkov A. V., Razrabotka topologii integral’noi mikroskhemy kodeka algebraicheskogo svertochnogo koda (Design of an integrated circuit topology for an algebraic convolutional codec), Trudy MAI (Proceedings of MAI), 2023, no. 133, URL: https://trudymai.ru/published.php?ID=183205, accessed 10 October 2025, EDN: PJKLFV.
  18. Shi Y. Q., Zhang X. M., Ni Z.-C., Ansari N., Interleaving for Combating Bursts of Errors, IEEE Circuits & Systems Magazine, 2004, vol. 4, no. 1, P. 29–42, DOI: 10.1109/MCAS.2004.1286985, URL: https://web.njit.edu/anl/papers/04CASMag.pdf, accessed 10 October 2025.
  19. Scholten M., Coe T., Dillard J., Continuously-Interleaved BCH (CI-BCH) FEC Delivers Best-in-Class NECG for 40G and 100G Metro Applications, Proceedings of the Optical Fiber Communication Conference (OFC/NFOEC 2010), Optical Society of America, 2010, Paper NTuB3, URL: https://opg.optica.org/abstract.cfm?uri=OFC-2010-NTuB3, accessed 10 October 2025.
  20. Roth C. H., John L. K., Lee B. K., Digital Systems Design Using Verilog, Boston, Cengage Learning, 2015, 824 p., ISBN 978-1-305-25333-3.
  21. Mohammad M., An 8b/10b Encoding Serializer/Deserializer (SerDes) Circuit for High Speed Communication Applications Using a DC Balanced, Partitioned Block, 8b/10b Transmission Code, International Journal of Electronics and Electrical Engineering, 2015, vol. 3, no. 2, April, URL: https://www.researchgate.net/profile/Mohammad-Maadi/publication/263469266_An_8b10b_Encoding_Serializ..., accessed 10 October 2025.
  22. Shi Y. Q., Zhang X. M., Ni Z. C., Ansari N., Interleaving for Combating Bursts of Errors, IEEE Circuits & Systems Magazine, 2004, vol. 4, no. 1, pp. 29-42, DOI: 10.1109/MCAS.2004.1286985.
  23. Huffman W. C., Pless V., Fundamentals of Error-Correcting Codes, Cambridge, Cambridge University Press, 2003, 646 p., ISBN 0-521-78280-5.
  24. Volkov A. S., Razrabotka imitatsionnoi modeli kanala s grupiruyushchimisya oshibkami (The development of simulation model of channel with burst error arrays), Trudy MAI (Proceedings of MAI), Moscow, MAI, 2023, no. 128, 31 p., DOI: 10.34759/trd-2023-128-12, URL: https://trudymai.ru/published.php?ID=183120, accessed 10 October 2025.
  25. Sklar B., Digital Communications: Fundamentals and Applications, 2nd ed., Upper Saddle River, Prentice Hall, 2001, 1104 p., ISBN 0-13-084788-7.
  26. Proakis J. G., Tsifrovaya svyaz’ (Digital Communications), 4-e izd., Moscow, Radio i Svyaz’, 2006, 928 p.
  27. Certificate of State Registration of Integrated Circuit Topology no. 2025630088 (Russian Federation), Topology of the Integrated Circuit Transceiver with a Ternary Error-Correcting Code and Modulation on a Ternary Basis, appl. 28 Mar 2025, publ. 04 Apr 2025, Volkov A. S., Loos V. V., Vitvinov A. V., EDN: IJISNA.
  28. Certificate of State Registration of Integrated Circuit Topology no. 2025630088 (Russian Federation), Topology of the Integrated Circuit Transceiver with a Ternary Error-Correcting Code and Modulation on a Ternary Basis, appl. 28 Mar 2025, publ. 04 Apr 2025, Volkov A. S., Loos V. V., Vitvinov A. V., EDN: IJISNA.
  29. Certificate of State Registration of Integrated Circuit Topology no. 2024630220 (Russian Federation), Integrated Circuit of Modem Blocks Based on Algebraic Convolutional Code, no. 2024630217, appl. 15 Oct 2024, publ. 21 Oct 2024, Sviridov I. A., Volkov A. S., Solodkov A. V. et al., applicant: National Research University of Electronic Technology - MIET, EDN: LFMEBY.
  30. Certificate of State Registration of Integrated Circuit Topology no. 2023630211 (Russian Federation), Topology of the Integrated Circuit of a Combined Codec of Algebraic Convolutional and Block Codes with Interleaving Capability, no. 2023630231, appl. 15 Nov 2023, publ. 20 Nov 2023, Volkov A. S., Solodkov A. V., Sviridov I. A., applicant: National Research University of Electronic Technology - MIET, EDN: XCDNQG.


Download

mai.ru — informational site MAI

Copyright © 2000-2025 by MAI

Вход