Features of the radio control system for the target equipment of an unmanned aerial vehicle – a high-altitude installer


Аuthors

Korotkov M. V.1*, Getmantsev A. Y.2**

1. 929th State flight-test center of the defence Ministry named after V.P. Chkalov, Akhtubinsk, Astrakhan region, 416500, Russia
2. Branch of the "Take-off" of the Moscow Aviation Institute (National Research University),

*e-mail: maksim.korotkov14@gmail.com
**e-mail: tomamens@mail.ru

Abstract

The article discusses the design features of an interference-resistant radio channel for controlling the target equipment of an unmanned aerial vehicle (UAV), which consists of four six-pin manipulators with grips and/or quick-release multifunctional power tools. 
The topic of consideration is the radio control system for the target equipment of an unmanned aerial vehicle – a high-altitude installer and its essential features.The purpose of the work: to determine the composition and individual key parameters of the UAV manipulator radio control system. Applied methods: methods of functional analysis, structural synthesis of radio transmitters and radio receivers, methods of noise-resistant encoding of information, methods of analysis and synthesis of antenna systems, etc. The methodology of the work consists in the step-by-step synthesis of the main elements of the radio control system of the target equipment of the UAV with manipulators, with an emphasis on high noise immunity, since the UAV performs the role of a high-altitude installer on radio towers in conditions of significant electromagnetic interference. The result of the work is the synthesis of a refined structural diagram of a radio line with the binding of elements and nodes of the circuit to the calculated values of the transmitter power, to certain parameters of the information and noise-resistant frame of the transmitted signal, the polarization parameters of the emitted pulse, as well as taking into account the noise-resistant properties of the information encoding method used. It is shown that the given calculated values make it possible to successfully implement an independent radio control channel for four six-pin manipulators with grips and quick-release multifunctional power tools. The field of application of the results is of high practical importance, since in world practice a combination of manipulators and unmanned aerial vehicles is found in single experimental design works. In addition to the functionality of a high-rise installer, a UAV with manipulators can be used in high-rise construction work, extraction of people during emergency rescue operations, providing the UAV operator with safe working conditions.

Keywords:

unmanned flying manipulator, radio control channel, noise-resistant coding

References

  1. Ronzhin A.L., Nguen V.V., Solenaya O.Ya. Analysis of the problems of the development of unmanned aerial manipulators and the physical interaction of UAVs with ground objects. Trudy MAI. 2018. No. 98. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=90439&eng=Y
  2. Kapkov R.Yu., Tyatyushkina O.Yu., Ul'yanov S.V. Intelligent cognitive management of robotic sociotechnical systems: quantum end-to-end IT in explanatory strong AI for the Industry 5.0 project. Sistemnyi analiz v nauke i obrazovanii. 2024. No. 2. P. 47-90. (In Russ.)
  3. Ngo K.T., Solenaya O.Ya., Ronzhin A.L. Analysis of mobile robotic platforms for servicing batteries of unmanned aerial vehicles. Trudy MAI. 2017. No. 95. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=84444
  4. Nguen V.V., Usina E.E. Dynamic models of control and stabilization of the movement of the UAV manipulator. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. 2020. No. 24 (4). P. 200 - 216. (In Russ.)
  5. Kanashchenkov A.I., Merkulov V.I. Aviatsionnye sistemy radioupravleniya. T. 1. Printsipy postroeniya sistem radioupravleniya. Osnovy sinteza i analiza (Aviation radio control systems. Vol. 1. Principles of building radio control systems. Fundamentals of synthesis and analysis). Moscow: Radiotekhnika Publ., 2004. 320 p.
  6. Ivanov A.A., Shmakov O.A. Algorithm for determining the internal geometry of a serpentine manipulator when the leading link moves along an increasing trajectory. Trudy SPIIRAN. 2016. No. 49. P. 190-207. (In Russ.)
  7. Korpela C.M., Danko T.W., Oh P.Y. MM-UAV: Mobile Manipulating Unmanned Aerial Vehicle. Journal of Intelligent & Robotic Systems. 2012. No. 65. P. 93-101. DOI: 10.1007/s10846-011-9591-3
  8. Gardecki S., Kasinski A., Bondyra A., Gasior P. Multirotor Aerial Platform with Manipulation System - Static Disturbances. Advances in Intelligent Systems and Computing. 2017. P. 357-366. DOI: 10.1007/978-3-319-54042-9_33
  9. Orsag M., Korpela C., Oh P. Modeling and Control of MM-UAV: Mobile Manipulating Unmanned Aerial Vehicle. Journal of Intelligent & Robotic Systems. 2013. No. 69. P. 227–240. DOI: 10.1007/s10846-012-9723-4
  10. Troshin A.V. Tsifrovye sistemy peredachi (Digital transmission systems). Samara: GOUVPO PGUTI Publ., 2013. 128 p.
  11. Brammer Yu.A., Pashchuk I.N. Impul'snye i tsifrovye ustroistva (Pulse and digital devices). Moscow: Vysshaya shkola Publ., 2003. 352 p.
  12. Zhuravlev V.I. Poisk i sinkhronizatsiya v shirokopolosnykh signalakh (Search and synchronization in broadband signals). Moscow: Radio i svyaz' Publ., 1986. 240 p.
  13. Sivers A.P. Proektirovanie radiopriemnykh ustroistv (Designing radio receiving devices). Moscow: Sovetskoe radio Publ., 1976. 480 p.
  14. Bleikhut R. Teoriya i praktika kodov, kontroliruyushchikh oshibki (Theory and practice of error-controlling codes). Moscow: Mir Publ., 1986. 576 p.
  15. Volkov A.S. The development of simulation model of channel with burst error arrays. Trudy MAI. 2023. No. 128. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=171396. DOI: 10.34759/trd-2023- 128-12
  16. Gabidulin E.M., Afanas'ev V.B. Kodirovanie v radioelektronike (Coding in radio electronics). Moscow: Radio i svyaz' Publ., 1986. 175 p.
  17. Klovskii D.D., Soifer V.A. Obrabotka prostranstvenno-vremennykh signalov v kanalakh peredachi informatsii (Processing of space-time signals in information transmission channels). Moscow: Svyaz' Publ., 1978. 206 p.
  18. Burenko E.A. Substantiation of the effectiveness of the use of signals with orthogonal frequency division multiplexing in aviation radio systems of information transmission. Trudy MAI. 2022. No. 127. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=170344. DOI: 10.34759/trd-2022-127-14
  19. Galitskaya E.O., Stenin YU.M., Korchagin G.E. Laboratornye raboty po rasprostraneniyu radiovoln i antennam (Laboratory work on radio wave propagation and antennas). Kazan': Kazanskii (Privolzhskii) federal'nyi universitet Publ., 2014. 40 p.
  20. Eremenko V.T. et al. Antenny i rasprostranenie radiovoln (Antennas and radio wave propagation). Orel: Orlovskii gosudarstvennyi universitet imeni I.S. Turgeneva Publ., 2017. 329 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2025 by MAI

Вход