УДК 621.452.3

Исследование распыливания топлива пневмомеханическими форсунками

А.М. Ланский, С.В. Лукачев, С.Г. Матвеев

Аннотация

В статье рассмотрены результаты экспериментальных исследований по влиянию конструктивных и режимных параметров на характеристики топливного факела. Выявлены некоторые новые особенности управления его дисперсными характеристиками.

Ключевые слова: форсунка, конструктивные и режимные параметры, диаметр сопла, конфузорный насадок, угол установки лопаток завихрителя.

Введение

Исследований по влиянию конструктивных и режимных параметров топливного факела пневмомеханических форсунок ограничено. Поэтому является важным изучение характеристик пневмораспыла.

В качестве объекта испытаний использовалась вихревая горелка двигателя МД-120 (рис.1), позволяющая независимо регулировать подачу топлива и вспомогательного воздуха [1, 2]. Установка для испытаний форсунок и диагностики факела распыла приведена на рис.2. Она имеет две системы подачи топлива: насосную и вытеснительную. К форсункам может подводиться воздух как низкого, так и воздух высокого давления. Распыленное топливо собирается в специальном накопителе в нижней части установки и периодически удаляется в общее хранилище для повторного использования. В процессе испытания через рабочую камеру непрерывно отсасывается воздух с помощью системы вытяжной вентиляции и регулируется двумя заслонками. Воздух перед выбросом в атмосферу очищается от аэровзвеси в импакторе. Вокруг установки на специальных столах размещены источники когерентного излучения – Не – Ne – лазеры, элементы оптических и измерительных систем. Оптические столы и распылительная камера имеют раздельные фундаменты, это повышает надежность настройки оптических систем в процессе испытаний и регламентных работ. (рис.2 и 3).

Расходная характеристика форсунки по топливу определялась весовым методом, а распределение топлива по радиусу и во всем поперечном сечении факела измерялось с помощью подвижного 35-канального сборника жидкой фазы, размещенного внутри распылительной камеры (рис.3), с последующим построением эпюр и полей методами

сплайн - функций. Угол топливного факела фиксировался как по его фотографиям, так и по радиальным эпюрам распределения топлива.

Рис.1. – Схема вихревой горелки двигателя МД-120.

1- воздушный завихритель; 2 - корпус вихревой горелки; 3 - топливный шнек; 4 – сопло для подвода вспомогательного воздуха; 5 - лопаточный завихритель; 6 - угол раскрытия топливного факела.

Рис.2. – Установка для испытания форсунок и диагностики факелов распыла

Рис.3. – Системы измерения характеристик топливного факела

Экспериментальные результаты для базового варианта приведены на рис.4. На перепадах давления $\Delta P_{T\Phi} \leq 300$ кПа средние диаметры капель изменяются от 80мкм до 200 мкм.

При подаче воздуха через завихритель с перепадом $\overline{\Delta P_B} = 2...3\%$ размеры капель при распылении 1-ой и 2-ой ступенями (раздельно) оказывались примерно одинаковыми и находились на уровне 20...30 мкм (рис. 4, 5).

Рис. 4. Характеристики мелкости распыла базового варианта пневмомеханической форсунки

Влияние диаметра сопла распылителя форсунок.

Для оценки влияния изменения диаметра выходного сопла распылителя была проведена серия испытаний при изменении d_C в диапазоне от 0,34 до 0,72 мм. Соответствующие им d_{32} показаны на рис. 5. Там же дается их сравнение с данными Симмонса, Хардинга, полученными ими для центробежных форсунок [2].

Рис. 5. Сопоставление величин измеренных d₃₂ при варьировании диаметром сопла первого контура

Влияние конфузорного насадка на выходе из горелки

Для горелки с конфузорным насадком топливо подавалось только через 1-ый топливный канал с диаметром выходного сопла d_C = 0,42 мм (рис. 6).

Рис. 6. Влияние конструкции конфузорного насадка на средний диаметр капель d₃₂ [2] При всех подобных конфигурациях форсунок d₃₂ с увеличением перепадов давления воздуха на завихрителях ΔP_{B.3AB} сначала увеличивается, достигая максимума, а затем снижается и при определенном значении ΔP_{B.3AB} становится существенно ниже значений для

чисто механического распыливания. Подобное изменение d_{32} можно объяснить изменением относительной скорости капель, а также взаимодействием закрученного потока воздуха с топливной пленкой, которая образуется на внутренней поверхности конфузорного насадка и толщина которой определяется расходом топлива и диаметром D.

С увеличением $\Delta P_{B.3AB}$ относительные скорости капель сначала снижаются, что означает уменьшение характерного числа Вебера We приводит к увеличению доли крупных капель в спектре распыла. Одновременно, на поверхности пленки (с внутренней стороны конфузорного насадка), контактирующей с обдувающим воздухом, образуются гребни, высота которых с ростом скорости воздуха W_B увеличиваются. На срезе выходного отверстия насадка из топливной пленки вытягиваются короткие струйки. С увеличением $\Delta P_{B.3AB}$, но при ещё сравнительно малых W_B , высота гребней растет, но шаг между ними еще мал, и при достаточно еще "толстых" первоначальных струйках ("нитях") должно происходить увеличение d_{32} . Величины шага между гребнями и толщина струек будут, очевидно, определять уровень d_{32} .

При дальнейшем увеличении $\Delta P_{B,3AB}$ происходит увеличение высоты гребней, а струйки вытягиваются и становятся тоньше. Если последнее происходит быстрее, то темпы роста d_{32} замедляются (рис. 3) так, что при $\Delta P_{B,3AB} = 2...4\%$ указанные процессы уравновешивают друг друга. Начиная с некоторой скорости обдувающего воздуха W_B с высоких гребней начинают срываться вторичные мелкие капли, но их доля незначительна и составляет от общего объема расхода топлива примерно 5...10%.

Влияние угла установки лопатки воздушного завихрителя на параметры факела распыла.

Для улучшения качества смесеобразования пневмомеханические форсунки выполняют часто с двумя или даже тремя концентрично расположенными лопаточными воздушными завихрителями. Воздушные потоки при этом могут направляться в различных направлениях [1, 2].

Закрутка воздуха способствует расширению факела распыла в поперечном сечении, а также более равномерному распределению топлива в нем (рис. 7). Однако области повышенного расхода топлива могут сохраниться и при типичных для КС величинах перепада давления $\Delta P_{B.3AB} \approx 3\%$. В случае спутной закрутки действие потоков в отношении распределения топлива, наоборот, усиливается, поэтому факел оказывается еще шире.

5

Рис. 7. Влияние особенностей подвода воздуха установки лопаток завихрителя на характеристики топливного факела

При всех вариантах испытанной форсунки увеличение $\Delta P_{B,3AB}$ способствует уменьшению d_{32} . Причем у форсунки с завихрителями при увеличении $\Delta P_{B,3AB}$ в диапазоне 0...1% размеры капель уменьшаются очень резко (рис. 7), а затем темпы их уменьшения плавно снижаются. У форсунки без завихрителей, только с противонагарным колпачком, темпы снижения d_{32} меньше, но при увеличении перепада до 10% и выше различия в размерах капель становятся не существенными. Значения d_{32} у форсунки со спутной закруткой по сравнению с форсункий только с противонагарным колпачком уменьшаются примерно на 24%, а у форсунки со встречной закруткой – на 43%. В последнем случае более сильному уменьшению d_{32} способствуют увеличение противоположно направленных касательных напряжений на поверхностях топливной пленки, а также генерация дополнительной турбулентности в вихревом слое, разделяющем противоположно закрученные потоки.

Таким образом, факел распыла форсунок с несколькими завихрителями характеризуется большими углами раскрытия, более равномерным распределением топлива и меньшими размерами капель, что благоприятно влияет на характеристики КС [1, 2].

Влияние подвода вспомогательного воздуха к корню топливного факела на параметры распыла.

Вспомогательный воздух как правило подается при запуске двигателя, либо на предсрывных режимах. Это необходимо для улучшения качества подготовки ТВС. Исследования в диапазоне перепадов $\Delta P_{T\Phi} = 20...400$ кПа и $\Delta P_{BO3} = 0...300$ кПа показали, что в зависимости от сочетания перепадов реализовывались различные режимы

6

распыливания. Так, если один из перепадов намного превышал другой, то, как показывали визуальные наблюдения, факел получался более однородным. Если перепады оказывались достаточно близкими, то факел становился неустойчивым и с неравномерным распределением топлива. В области значений $\Delta P_{T\Phi} = 100...400$ кПа и $\Delta P_{BO3} = 150...300$ кПа наблюдались режимы со срывом капельных струй с выходных кромок воздушного завихрителя. С увеличением ΔP_{BO3} в пределах указанного диапазона разрушение факела сопровождалось появлением мелкодисперсных паровоздушных струй, вытекающих через лопаточный завихритель в сторону от оси форсунки под почти прямым к ней углом. При дальнейшем увеличении ΔP_{BO3} мощные струи полностью разрушали первоначальный факел, сталкивались в непосредственной близости от сопла и приводили к запиранию основного канала подачи топлива.

На рис. 8 представлены полученные данные по d_{32} . В качественном отношении протекание зависимостей согласуется удовлетворительно, причем, наблюдаются схожие выпуклости, связанные с влиянием, как обычно считают, относительной скорости капель, которая сначала велика, затем уменьшается до минимума (зависимости d_{32} получают пологий максимум), а затем вновь увеличивается и d_{32} асимптотически уменьшаются.

Общий уровень значений d_{32} , особенно при малых перепадах по топливу, уменьшается в 2...3 раза. Объяснение полученных результатов можно дополнить анализом взаимодействия кольцевых струй воздуха и топлива, при этом высоконапорный воздух принимает непосредственное участие как в разрушении самих топливных струй, так и во вторичном дроблении крупных капель.

Так, с ростом ΔP_{BO3} в диапазоне 0...400 кПа при $\Delta P_{T\Phi}$ = const различные формы взаимодействия струй сменяют друг друга. В случае низких ΔP_{BO3} факел "обжимается" со стороны боковой поверхности, о чем может свидетельствовать наблюдаемое уменьшение угла факела распыла (рис. 5).Одновременно и резко уменьшаются d₃₂, что можно объяснить снижением эффективного перепада по топливу и продлением пленочной формы распыливания. Необходимо также иметь ввиду, что при низких ΔP_{BO3} и, соответственно, низких скоростях воздуха W_B критические деформации крупных капель, по-видимому, успевают развиться, что должно способствовать уменьшению d₃₂. Может оказаться и так, что в действительности последний фактор является преобладающим и в этом случае мы фиксируем резкое снижение d₃₂ (рис. 8).

7

Рис. 5. Влияние подвода воздуха к корню факела топливного распыла на характеристики распыливания.

Таким образом, проведенные экспериментальные исследования позволили установить влияние конструктивных и режимных параметров на характеристики топливного факела. Получены новые научные результаты по влиянию вспомогательного воздуха на качество подготовки топливно-воздушной смеси

Библиографический список

1. Диденко А.А. исследование качества распыливания топлива и его влияния на характеристики камер сгорания малоразмерных ГТД: дисс.канд.техн.наук/А.А. Диденко. – Самара, 1996. – 260с.

2. Ланский А.М. Рабочий процесс камер сгорания малоразмерных ГТД /А.М. Ланский, С.В. Лукачев, С.Г. Матвеев. – Самара: Изд-во СНЦ РАН, 2009г. – 335с.

Сведения об авторах

Ланский Анатолий Михайлович, доцент Самарского государственного аэрокосмического университета имени академика С.П. Королева (национального исследовательского университета), к.т.н.

СГАУ, Московское шоссе, 34. г. Самара, 443086;

тел.: (846) 267-44-46; e-mail: lansky@ssau.ru

Лукачев Сергей Викторович, профессор, заведующий кафедрой Самарского

государственного аэрокосмического университета имени академика С.П. Королева (национального исследовательского университета), д.т.н. СГ АУ, Московское шоссе, 34, г. Самара, 443086;

тел.: (846) 267-43-05; e-mail:lucachev@ssau.ru

Матвеев Сергей Геннадьевич, доцент Самарского государственного

аэрокосмического университета имени академика С,П. Королева (национального исследовательского университета), к.т.н.

СГАУ, Московское шоссе, 34, г. Самара;

тел.: (846) 267-43-92; e-mail:pfu@ssau.ru