УДК 629.7.002 (075.8)

Применение рентгеновской томографии для контроля агрегатов летательных аппаратов из композиционных материалов

Ларин А.А., Резниченко В.И.

Аннотация: развитие методов неразрушающего контроля композиционных конструкций позволяет всё точнее определять местоположение и размеры дефектов внутренней структуры материала. Создание методик оценки изменения физикомеханических свойств изделия совместно с применением современных методов контроля позволит спрогнозировать ресурс конструкции и её прочностные и жесткостные свойства.

Ключевые слова: композиционные материалы; томография; несущая способность; прочность; дефекты внутренней структуры.

В последнее время наблюдается всё более широкая тенденция к внедрению композиционных материалов (КМ) в конструкцию самолетов, вертолетов, ракет, больших и малых судов и др. Применение КМ позволяет снизить массу деталей, агрегатов и узлов, улучшить жесткостные и прочностные физико-механические свойства, повысить долговечность и ресурс конструкции.

Однако наличие внутренних дефектов различной природы в структуре КМ неизбежно приводит к снижению характеристик и свойств готового пластика, поэтому для анализа изменения ресурса и несущей способности изделия из КМ необходимо применение современных методов неразрушающего контроля (НК) и создание соответствующих прочностных методик, позволяющих оценить степень деградации свойств композитной конструкции при возникновении в ней внутренних дефектов.

Компьютерная реконструктивная рентгеновская томография, являясь эффективным методом НК, позволяет выявить дефекты внутренней структуры слоистого КМ, оценить их

1

линейные геометрические размеры и определить их местоположение в пакете. Эти дефекты в можно разделить на две категории: дефекты армирующего наполнителя и дефекты матрицы.

Дефекты первой категории представляют из себя разрывы волокон армирующей структуры при действии внешних нагрузок, порывы волокон в процессе изготовления тканей различного переплетения, механические повреждения арматуры в процессе выкладки и др. К дефектам второй категории можно отнести пустоты в матрице, местные непроклеи, расслаивание, растрескивание матрицы. [1].

В случае повреждений армирующей составляющей КМ происходит перераспределение нагрузки на неповрежденные волокна структуры, а через матрицу с помощью касательных напряжений происходит включение поврежденного волокна в работу. При повреждении матрицы нарушается связь между волокнами, что приводит и их выдергиванию из материала и раздергиванию композита в целом, однако несущая способность КМ меняется не очень значительно.

На физико-механические свойства готового композиционного материала оказывают влияние не только линейные размеры дефектов и их количество, но и их расположение в структуре композита. Пример картины внутренних повреждений в композиционной пластине, полученной с помощью томографа. представлен на рисунке 1. На нем показаны повреждения композиционного пакета при ударном воздействии на исследуемый образец. Хорошо видны зоны растрескивания по связующему, смятия волокон и их разрыва.

Рис.1. Картина поврежденной внутренней структуры, полученная с помощью компьютерной томографии.

Темой данной статьи является выявление аналитических зависимостей несущей способности композиционного материала при наличии в нем дефектов различных видов.

Процесс изготовления КМ (совмещения армирующей и матричной составляющей) характеризуется возможностью появления значительного количества дефектов в виде пор, непроклеев, растрескивания матрицы, а также дефекты армирующей компоненты, такие как: разрыв единичных волокон в монослоях и разрывы нескольких волокон, лежащих в монослое в непосредственной близости друг от друга. Поскольку волокна в КМ воспринимают основную действующую нагрузку, то при появлении дефектов армирующей структуры происходит перераспределение нагрузки с поврежденных волокон на неповрежденные, и, как следствие, рост напряжений в волокнах, расположенных в окрестностях поврежденного волокна. [2].

Рассмотрим вопрос о выявлении зависимости несущей способности КМ от расположения по толщине пакета дефекта в виде порыва элемента армирующей составляющей композита при одноосном растяжении-растяжении образца.

Для определения зависимостей по данному вопросу было проведено моделирование слоистого композиционного материала в конечно-элементном комплексе Nastran/Patran. композита и повреждений производится в программной среде Nastran/Patran. Моделирование проводится Shell-элементами типа Quad-4, нагружение проводится в виде равномерного растяжения по одной из сторон пластины, другой конец пластины жестко закреплен. Шаг конечно-элементной сетки составляет 0,2мм, совпадая с толщиной монослоя.

Физико-механические характеристики моделируемого КМ представлены в таблице 1.

Табл.1. Физико-механические свойства материала.

Параметр	Значение
E1	10000 кг/мм ²
E2	800 кг/мм ²
G12	450 кг/мм ²
μ12	0,32

Дефект армирующей структуры КМ моделировался в виде единичного разрыва волокна. Варьируемыми параметрами являлись число монослоёв в пакете N и текущий номер дефектного слоя n_i . Таким образом, функция максимальных напряжений будет иметь следующий вид:

$$\sigma_{\text{max}} = f(N, n_i, \varphi) \tag{1.1}$$

φ - угол укладки однонаправленных монослоёв пакета по направлению к действию сил растяжения-сжатия.

Для первой расчетной модели примем угол $\varphi = 0$. Тогда функция напряжений примет следующий вид:

$$\sigma_{\text{max}} = f(N, n_i) \tag{1.2}$$

Количество монослоёв в композитном пакете в модели варьировалось от 9 до 15 с расчетом 20, 50 и 100-слойных пакетов для проверки эмпирических зависимостей. Для каждого расчетного случая указаны максимальные значения напряжений и процент возрастания напряжений по сравнению со значением напряжений регулярной зоны, составляющих 20 кг/мм². Точки с максимальным напряжением находятся на вертикальной оси по координате дефекта в виде разрыва волокон армирующей структуры.

Растягивающая нагрузка, которую необходимо приложить для создания в регулярной зоне панели напряжений σ_{per} , определяется по следующей формуле:

$$P = \sigma_{pee} \cdot N \cdot h_{mono} \cdot b \tag{1.3}$$

N - число монослоёв в однонаправленном пакете, h_{mono} - толщина монослоя композита, *b* - ширина панели.

В таблицах №2, №3, №4 указаны типовые результаты расчета однонаправленных композитных пакетов с углом укладки 0 градусов для 9,10 и 11-ти монослоях в пакете.

№ слоя	1	2	3	4	5	6	7	8	9
σ_{max}	21,43	21,35	21,03	20,75	20,41	20,75	21,03	21,35	21,43
Прирост %	7,15	6,75	5,15	3,75	2,05	3,75	5,15	6,75	7,15

Табл. 2. Данные расчетов для пакета 9 слоёв

Таблица 3. Данные расчетов для пакета 10 слоёв

№ слоя	1	2	3	4	5	6	7	8	9	10
σ_{max}	21,36	21,27	21,00	20,76	20,54	20,54	20,76	21,00	21,27	21,36
Прирост %	6,80	6,35	5,00	3,80	2,70	2,70	3,80	5,00	6,35	6,80

Таблица 4. Данные расчетов для пакета 11 слоёв

№ слоя	1	2	3	4	5	6	7	8	9	10	11
σ_{max}	21,25	21,17	20,96	20,77	20,57	20,39	20,57	20,77	20,96	21,17	21,25
Прирост %	6,25	5,85	4,80	3,85	2,85	1,95	2,85	3,85	4,80	5,85	6,25

Центральный слой пакета либо центр симметрии пакета с легкостью подлежат определению. Поэтому в силу симметрии рассмотрим зависимость подрастания напряжений в зависимости от порядкового номера слоя, в котором наблюдается элементарный дефект.

Формула для оценки концентрации напряжений в зоне дефекта в зависимости от общего числа слоёв и номера дефектного слоя для слоёв с углом укладки, совпадающим с направлением приложения нагрузок, запишется в следующем виде:

$$\sigma_{max} = \sigma_{pee} \cdot (1 + K_{ed}) \tag{1.4}$$

здесь K_{ed} - коэффициент концентрации напряжений в зоне дефектов внутренней структуры КМ.

$$K_{e0} = \frac{N}{(N+1.5 \cdot n_i)^2}$$
(1.5)

n_i - в данном случае пробегает половину от общего числа монослоёв в пакете ввиду его симметрии.

При этом при отсутствии дефектов (идеальный пакет):

$$\sigma_{max} = \sigma_{pez} \tag{1.6}$$

Проведем сравнение результатов конечно-элементного моделирования КМ с внутренними дефектами армирующей структуры с результатами, полученными согласно (1.4) и (1.5).

Рис. 3. Зависимость максимальных напряжений в зоне дефекта от его положения в пакете. Сравнение экспериментальных и аналитических данных для пакета из 9 слоев.

Рис. 4. Зависимость максимальных напряжений в зоне дефекта от его положения в пакете. Сравнение экспериментальных и аналитических данных для пакета из 10 слоев.

Рис. 5. Зависимость максимальных напряжений в зоне дефекта от его положения в пакете. Сравнение экспериментальных и аналитических данных для пакета из 11 слоев.

Предложенная формула определения максимальных напряжений в зоне единичного дефекта арматуры при растяжении-сжатии однонаправленных КМ с углом укладки $\varphi = 0$ дает результаты, близкие к результатам конечно-элементного моделирования. Для оценки диапазона применимости предложенной формулы по числу монослоёв проведем сравнение результатов моделирования с теоретическими значениями согласно (1.5) для $N_1 = 5$, $N_2 = 20$.

Рис. 6. Зависимость максимальных напряжений в зоне дефекта от его положения в пакете. Сравнение экспериментальных и аналитических данных для пакета из 5 слоев.

Рис. 7. Зависимость максимальных напряжений в зоне дефекта от его положения в пакете. Сравнение экспериментальных и аналитических данных для пакета из 20 слоев.

Таким образом, результаты компьютерного моделирования композитного образца с элементарным дефектом арматуры и предложенной теоретической зависимости хорошо совпадают с достаточной степенью точности.

Поскольку композиционный материал может быть выполнен на основе различных исходных волокон, имеющих в совокупности большой разброс физико-механических характеристик, проведем оценку применимости предложенной формулы определения максимальных напряжений в зоне дефектов для однонаправленных композитных материалов, имеющих различные значения модуля упругости в направлении армирования. Выбор в качестве исходного материала с указанными выше характеристиками диктовалось их близостью к характеристикам углепластиков на основе волокон типа T-700, AS-4 и эпоксидных связующих типа RTM6. Для моделирования однонаправленного стеклопластика примем следующие значения физико-механических характеристик материалов:

Табл.5. Физико-механические свойства материала типа "стеклопластик".

Параметр	Значение
E1	4500 кг/мм ²
E2	800 кг/мм ²
G12	450 кг/мм ²
μ12	0,31
Толщина монослоя	0,2 мм
Направление укладки	0 градусов

Табл.6. Физико-механические свойства материала типа "композит на основе высокомодульных и сверхвысокомодульных волокон".

Параметр	Значение
E1	25000 кг/мм ²
E2	800 кг/мм ²
G12	450 кг/мм ²
μ12	0,32
Толщина монослоя	0,2 мм
Направление укладки	0 градусов

Результаты конечно-элементного моделирования и теоретических расчетов для варианта 10-слойного пакета предоставлены на рисунках 8, 9.

Рис. 8. Зависимость максимальных напряжений в зоне дефекта от его положения в пакете. Сравнение экспериментальных и аналитических данных для пакета из 10 слоев на основе материала типа "стеклопластик".

Рис. 9. Зависимость максимальных напряжений в зоне дефекта от его положения в пакете. Сравнение экспериментальных и аналитических данных для пакета из 10 слоев на основе материала типа "композит на основе высокомодульных и сверхвысокомодульных волокон".

Результаты, представленные выше, позволяют говорить применимости 0 предложенной формулы (1.4)для материалов с различными механическими характеристиками армирующей составляющей. Представленное на рис.10 обобщение результатов КЭ моделирования для монослоёв с Е1 = 4500 кг/мм.кв и Е1 = 30000 кг/мм.кв соответственно и зависимости, полученной с помощью (1.4), говорит о достаточной сходимости результатов.

Рис.10. Графическое обобщение результатов для однонаправленных КМ на основе волокон с различным модулем упругости.

Таким образом, проведенные расчеты доказывают применимость расчетной формулы (1.4), (1.5) для определения возрастания напряжений в однонаправленных композитах при появлении в них внутренних дефектов армирующей структуры.

При наличии множественных повреждений волокон, находящихся совместно и локально по высоте пакета КМ, каждый дефект рассматривается изолированно, определяются коэффициенты концентрации напряжений K_{eo}^{i} для дефектов в соответствии с (1.5), итоговое значение максимальных напряжений в зоне множественных внутренних дефектов определяется по следующей формуле:

$$\sigma_{\text{max}} = \sigma_{pee} \cdot \left(1 + K_{ed}^1\right) \cdots \left(1 + K_{ed}^2\right) \cdots \cdots \left(1 + K_{ed}^q\right)$$
(1.7)

q - количество дефектных слоёв в сечении.

По результатам проведенных расчетов при сквозном разрыве волокон в сечении напряжения в данной зоне повышаются на 53 - 68 %, что может привести к снижению ресурса и несущей способности композиционных деталей и панелей, выполненных из однонаправленных монослоёв.

Предложенные формулы (1.4), (1.5), (1.7) дают возможность оценить возрастание напряжений в зоне внутренних дефектов армирующей структуры однонаправленных КМ при одноосном растяжении-сжатии, а использование современных методов НК, таких как компьютерная рентгеновская томография, позволяет определить точное местоположение и линейные размеры дефектов КМ. Предсказание изменения напряженно-деформированного состояния композитной конструкции будет особенно актуально для отраслей промышленности, в которых используют КМ, т.е. в авиа- и вертолетостроении, судостроении, приборостроении и космонавтике.

Библиографический список.

1. Неразрушающий контроль. В 5 кн. Кн. 4: Контроль излучениями: Практ. пособие/ А. К. Гурвич, И. Н. Ермолов, С. Г. Сажин; Под ред. В. В. Сухорукова. - М.: Высш. шк., 1992. - 242 с.: ил.

2. В. В. Васильев. Механика конструкций из композиционных материалов. - М.: Машиностроение, 1988. - 272 с.: ил.

Сведения об авторах.

Ларин Алексей Андреевич, аспирант Московской Академия Рынка Труда и Информационных Технологий", ОАО "ММЭЗ-КТ", тел. 8(909)940-42-48, email: sigma_mai@mail.ru.

Резниченко Вячеслав Иванович, доцент Московского авиационного института (национального исследовательского института), к.т.н, член-корреспондент РЭА. тел. 8(903)122-47-11, email: kmit@martit.ru

11