УДК: 621.391

Теоретико-числовая модель аналитического оценивания и выбора ансамблей сигналов в асинхронно-адресных телекоммуникационных системах

В.Ю.Михайлов

Предложена теоретико-числовая модель представления функции взаимной корреляции (ФВК) кодов максимальной длины, позволяющая выполнить аналитическое оценивание характеристик ФВК путем анализа числовых сравнений. Предложена методика и примеры аналитического оценивания максимальных уровней ФВК. Использование методики не связано с компьютерными вычислительными процессами. Результаты носят общий характер и полезны для оперативной оценки возможностей построения квазиортогональных ансамблей сложных кодированных сигналов требуемого качества при проектировании асинхронно-адресных и командных авиационно-космических телекоммуникационных системах.

Ключевые слова: аналитическое оценивание; ансамбли сигналов; асинхронно-адресные системы; телекоммуникации, функции взаимной корреляции.

Введение

В [1, 2] показано, что периодическая функция взаимной корреляции (в дальнейшем ФВК) двух последовательностей $a(i+\tau) = S(\alpha^{i+\tau})$ и $b(i) = S(\alpha^{ik})$ длины $N = 2^{2p} - 1$ может быть определена по формуле

$$\theta_k(\tau) = \sum_{i=0}^{N-1} S(\alpha^{i+\tau}) S(\alpha^{ik}) = 2^p (M-1) - 1,$$
(1)

где k – число, определяющее структуру последовательности b(i), причем (k, N) = 1 и

$$k \equiv 1 \pmod{(2^p - 1)}; \tag{2}$$

 τ — параметр задержки последовательности b(i) - аргумент ФВК;

М – число решений алгебраического уравнения

$$\alpha^{\nu+\tau} + \alpha^{\nu k} = \gamma \tag{3}$$

относительно неизвестной $v = \{0,1,...,2^p\}$;

 $\alpha \in GF(2^{2p})$ – примитивный элемент поля $GF(2^{2p})$;

 $\gamma \in GF(2^p)$ – произвольный элемент подполя $GF(2^p)$;

$$S(\alpha^{i}) = \varphi(T(\alpha^{i})); \ \varphi(x) = \begin{cases} +1 \ npu \ T(x) = 0; \\ -1 \ npu \ T(x) = 1. \end{cases}$$

а
$$T(x) = \sum_{i=0}^{n-1} x^{2^i}$$
 — двоичный след элемента x поля Галуа порядка 2^n [3, c. 194].

Работа [1], в основном, посвящена поиску и исключению из ансамбля заведомо «плохих» пар кодовых последовательностей, соответствующих максимально возможным значениям параметра M. Там же найдены условия существования пар последовательностей с уровнями ФВК приблизительно N/3.

В [2] сформулирован общий принцип синтеза квазиортогональных ансамблей указанного типа.

Цель дальнейшего анализа — уточнение ФВК (1) как функции параметра $M = f(k, \tau)$, поэтому основное внимание будет уделено решению алгебраического уравнения (3). Выполненный анализ этого уравнения показал, что все его решения соответствуют трем вариантам, в каждом из которых существуют от 2 до 3 подвариантов, в конечном итоге исчерпывающих все возможные решения уравнения (3). Полная схема вариантов решений представлена на рис. 1.

Варианты решения уравнения $\alpha^{\nu+\tau} + \alpha^{\nu k} = \gamma$

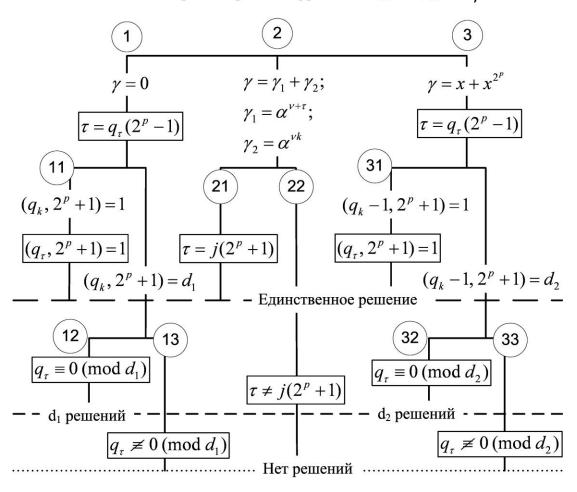


Рис. 1. Схема вариантов решений уравнения (3)

Вариант 1

 $\gamma = 0$ (ветвь 1 на рис.1).

В этом случае параметр ν должен удовлетворять сравнению

$$v + \tau \equiv vk \pmod{N}. \tag{4}$$

Для определения числа решений (4) представим k с учетом (2) в виде

$$k = q_{\nu}(2^{\nu} - 1) + 1. (5)$$

Тогда сравнение (4) приобретает вид

$$\tau \equiv vq_{k}(2^{p}-1) \pmod{(2^{2p}-1)}.$$
(6)

Из теории сравнений [3, с. 66] следует, что решения сравнения (6) существуют только при условии делимости его левой части на 2^p-1 , а следовательно значения τ должны иметь вид

$$\tau = q_{\tau}(2^{p} - 1), \ q_{\tau} = 0, 1, ..., 2^{p}. \tag{7}$$

После подстановки (7) в (6) и сокращения общего делителя получим

$$q_{\tau} \equiv vq_k \pmod{(2^p + 1)}. \tag{8}$$

Поскольку максимальное значение ν равно 2^p , то (8), очевидно, описывает все возможные решения сравнения (4).

Количество решений (8) зависит от величины наибольшего общего делителя (НОД) чисел q_{τ}, q_k и $2^p + 1$. НОД чисел a, b принято обозначается в виде (a, b). Если числа a, b -взаимно простые, т.е. не имеют общих делителей, то используется следующее обозначение (a, b) = 1. Итак, возможны следующие три варианта решений сравнения (8):

- 1) сравнение имеет единственное решение при условиях $(q_k, 2^p + 1) = 1; (q_\tau, 2^p + 1) = 1$ (ветвь 11 на рис. 1);
- 2) сравнение имеет $(q_k, 2^p + 1) = d_1 > 1$ решений при условии $q_\tau \equiv 0 \pmod{d_1}$ (ветвь 12 на рис. 1);
- 3) сравнение не имеет ни одного решения, если $(q_k, 2^p + 1) = d_1$, но при этом $q_r \not\equiv 0 \pmod{d_1}$ (ветвь 13 на рис. 1).

Вариант 2

Этот вариант ограничивает область значений слагаемых рассматриваемого уравнения подмножеством элементов, принадлежащих подполю $GF(2^p)$ (ветвь 2 на рис. 1):

$$\begin{cases} \alpha^{\nu+\tau} = \gamma_1 \in GF(2^p); \\ \alpha^{\nu k} = \gamma_2 \in GF(2^p). \end{cases}$$

Очевидно, что эта система эквивалентна следующей системе сравнений

$$\begin{cases} v + \tau \equiv 0 \pmod{(2^p + 1)}; \\ vk \equiv 0 \pmod{(2^p + 1)}. \end{cases}$$

$$(9)$$

Анализ системы (9) показывает, что при $\nu \le 2^p$ она имеет единственное решение $\nu = 0$ (ветвь 21 на рис.5.4), но только при условии $\tau \equiv 0 \pmod{(2^p + 1)}$.

Следовательно, и уравнение (3) будет иметь два решения при следующих значениях аргумента ФВК:

$$\tau = (2^p + 1)j; j = 1, 2, ..., 2^p - 2.$$

Здесь значение $\tau = 0$ исключено, чтобы не допустить пересечения с рассмотренным ранее условием (4), соответствующим варианту 1.

Вариант 3

Этот вариант (ветвь 3 на рис. 1) задает представление (3) в виде функции отображения элемента поля $GF(2^{2p})$ в элемент подполя $GF(2^{p})$ в виде

$$\gamma = x + x^{2^p} \,, \tag{10}$$

где x – произвольный элемент поля $GF(2^{2p})$.

На основе определения двоичного следа [3, с. 194] несложно убедиться в результативности преобразования (10), поскольку двоичный след γ как элемента подполя $GF(2^p)$ в точности равен двоичному следу γ как элемента поля $GF(2^{2p})$.

Строго говоря, два первых варианта являются частными случаями третьего и выделяются с целью оперативной оценки снизу количества решений M .

Рассмотрим двоичный след элемента $\alpha^{\nu+\tau} + \alpha^{\nu k}$, определенного в (3), как элемента подполя $GF(2^p)$:

$$\begin{split} T_{2^{p}}(\alpha^{v+\tau} + \alpha^{vk}) &= \alpha^{v+\tau} + \alpha^{2(v+\tau)} + ... + \alpha^{(v+\tau)2^{p-1}} + \\ &+ \alpha^{vk} + \alpha^{2vk} + ... + \alpha^{vk2^{p-1}}. \end{split}$$

Отсюда следует, что $\alpha^{\nu+\tau}+\alpha^{\nu k}\in GF(2^p)$, если справедливо одно из двух представлений

$$\nu k \equiv (\nu + \tau) 2^p \pmod{N},\tag{11}$$

или

$$v + \tau \equiv vk2^p \pmod{N},\tag{12}$$

поскольку только при этих условиях указанное выражение является двоичным следом.

Более детальное рассмотрение показывает, что представление (12) полностью эквивалентно (11). Действительно, помножая левую и правую части (12) на 2^p , получим

$$(\nu + \tau)2^p \equiv \nu k 2^{2p} \pmod{N} \equiv \nu k \pmod{N}$$
.

Таким образом, множество решений (3) в рассматриваемой ситуации совпадает с множеством решений (11).

Сравнение (11) эквивалентно сравнению

$$\tau 2^p \equiv \nu (k-2^p) \pmod{2^{2p}-1},$$
 которое с учетом (2) приводится к виду
$$\tau 2^p \equiv \nu (q_k-1)(2^p-1) \pmod{2^{2p}-1}.$$

Последнее сравнение имеет решения только для аргументов τ , определенных равенством (7), вследствие чего имеем:

$$q_{\tau} 2^p \equiv \nu(q_k - 1) \pmod{2^p + 1}$$
. (13)

Поскольку по условию $\nu \le 2^p$, то (13) описывает все возможные решения (11). Количество решений сравнения (13) зависит от величины НОД чисел $q_\tau, q_k - 1$ и $2^p + 1$. При этом возможны следующие три варианта:

- 1) сравнение (13) имеет единственное решение при $(q_k 1, 2^p + 1) = 1$ (ветвь 31 на рис.1);
- 2) сравнение (13) имеет $(q_k-1,2^p+1)=d_2>1$ решений при условии $q_\tau\equiv 0\ (\mathrm{mod}\ d_2)$, так как $(d_2,2^p)=1$ (ветвь 32 на рис. 1);
- 3) сравнение (13) не имеет ни одного решения, если $(q_k-1,2^p+1)=d_2$, но при этом $q_{\tau}\not\equiv 0\ (\mathrm{mod}\ d_2)\ (\mathrm{ветвь}\ 33\ \mathrm{на}\ \mathrm{puc}.\ 1).$

Полученные результаты анализа соотношений (4), (9) и (11) необходимы для оценки количества решений M исходного уравнения (3).

Ожидаемые оценки, по крайней мере, при некоторых условиях будут носить характер нижней границы. В частности, это является следствием того, что рассмотренный выше вариант 3 оценивает принадлежность элемента $\alpha^{\nu+\tau}+\alpha^{\nu k}$ только к подполю порядка 2^p . Однако само это подполе $GP(2^p)$ может содержать подполя, порождающие дополнительные решения. Очевидно, что предложенный метод анализа никак не ограничивает рассмотрение и таких ситуаций, но в данной статье с целью достижения простоты изложения они не анализируются. В любом случае минимальное значение M=0 и минимальный (с учетом знака) уровень ФВК всегда равен

$$\min_{\tau} \theta_k(\tau) = -(2^p + 1).$$

Из полученных выше результатов следует, что все множество значений k вида (5) разбивается на три подмножества, которые представлены схемами a, b, c на рис. 2.

Оценка количества решений в зависимости от k

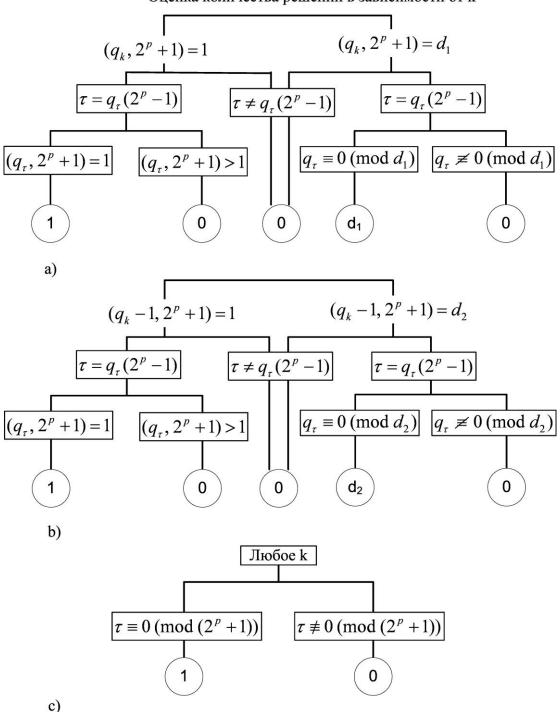


Рис. 2. Оценка количества решений M

Анализ вариантов решений на рис. 2 показывает, что лучшие с точки зрения минимального значения максимального уровня Φ ВК результаты получаются при выборе значений k, удовлетворяющих следующей системе уравнений:

$$\begin{cases}
(q_k, 2^p + 1) = 1 \\
(q_k - 1, 2^p + 1) = 1.
\end{cases}$$
(14)

Оценим возможности решения системы (14). Для этого перепишем условие (5) для k ,представленного в следующей эквивалентной форме

$$k = q_k(2^p + 1) - (2q_k - 1),$$

откуда вытекает ограничение для выбора числа q_{ι} :

$$(2q_k-1, 2^p+1)=1.$$

Таким образом, система (14) с учетом всех ограничений должна быть представлена в виде

$$\begin{cases}
(q_k, 2^p + 1) = 1; \\
(q_k - 1, 2^p + 1) = 1; \\
(2q_k - 1, 2^p + 1) = 1.
\end{cases}$$
(15)

Каждое из условий можно представить в виде системы условий

$$(2q_k-1, e_i)=1; i=1,2,...,m_n$$

где $e_i - i$ -й делитель числа $2^p + 1$;

 m_p — количество делителей числа $2^p + 1$.

Таким образом, система (15) приобретает вид

$$\begin{cases} (q_k, e_i) = 1; \\ (q_k - 1, e_i) = 1; & \text{при } i = 1, 2, ..., m_p. \\ (2q_k - 1, e_i) = 1. \end{cases}$$
 (16)

Из (16) следует, что самые жесткие ограничения на выбор значений q_k накладывает минимальный делитель e_1 числа 2^p+1 , значение которого зависит от свойств чисел p и 2^p+1 . Одни из вариантов оценивания состоит в представлении минимального делителя в форме $e_1=2^e+1$. Найдем далее условия, при которых 2^p+1 делит $e_1=2^l+1$. Нетрудно установить, что таким условием является p=(2t+1)l, где $t\ge 1$ - целое число. Отсюда, в частности, следует, что минимальный делитель $e_1=3$ соответствует значению l=1 и любому нечетному числу p=2t+1, а минимальный делитель $e_1=5$ - значению l=2 и любому четному числу вида p=2(2t+1).

Кроме того, анализ показывает, что для некоторых четных значений p числа $2^p + 1$ могут быть простыми. В частности, скорее всего, многие (но не все) из чисел Ферма вида $2^p + 1$; $p = 2^s$ являются простыми. В этой ситуации система (15) имеет решение для любых

значений q_k . Однако для чисел p вида $p=2^j(2q_p+1);\ j>0;\ q_p>0$ числа 2^p+1 имеют минимальный делитель $e_1=2^{2^j}+1$. Итак, при поиске наилучших кодовых последовательностей рассматриваемого подкласса система (16) может быть заменена системой

$$\begin{cases} (q_k, e_1) = 1; \\ (q_k - 1, e_1) = 1; \\ (2q_k - 1, e_1) = 1. \end{cases}$$
(17)

и все возможные ее решения соответствуют четырем вариантам представления чисел p:

нечетные p вида p = 2t + 1, для которых $e_1 = 3$;

четные p вида p = 2(2t+1), для которых $e_1 = 5$;

четные p вида $p = 2^s$ такие, что числа Ферма вида $2^p + 1$ - простые;

четные p вида $p=2^{j}(2q_{p}+1); j>1; q_{p}>0$, для которых $e_{1}=2^{2^{j}}+1$.

Bapuahm 1: p = 2t + 1; $e_1 = 3$

Для этого варианта система (17) решения не имеет, а следовательно этот вариант соответствует либо условию $(q_k, 2^p + 1) = d_1$, либо условию $(q_k - 1, 2^p + 1) = d_2$, где $d_1 = d_2 = e_1 = 3$. В частности, если t = 2; p = 5, то минимальное значение q_k по условию $(q_k, 2^p + 1) = d_1$ равно 3, что соответствует k = 47 (см. рис. 3b). При этом $(q_k - 1, 2^p + 1) = 1$, полное число решений M = 5 и максимальный уровень ФВК в соответствии с (1) равен

$$\theta_{k}(\tau) = 2^{p}(M-1)-1 = 2^{p+2}-1.$$

Bapuahm 2: p = 2(2t+1); $e_1 = 5$

Для этого варианта система (17) имеет два решения, а следовательно этот вариант соответствует условиям $(q_k, 2^p + 1) = 1$, $(q_k - 1, 2^p + 1) = 1$. В частности, если t = 1; p = 6, то минимальное значение q_k , удовлетворяющее (17), равно 2, что соответствует k = 127 (см. рис. 3c). При этом полное число решений M = 3 и максимальный уровень ФВК в соответствии c (1) равен

$$\theta_k(\tau) = 2^p (M-1) - 1 = 2^{p+1} - 1.$$

Вариант 3: $p = 2^s$, число $2^p + 1$ - простое

Для этого варианта система (17) имеет также два решения, а следовательно этот вариант соответствует условиям $(q_k, 2^p + 1) = 1$, $(q_k - 1, 2^p + 1) = 1$. В частности, если s = 1; p = 4, то минимальное значение q_k , удовлетворяющее (17), равно 2, что соответствует k = 31 (см. рис. 3a). При этом полное число решений M = 3 и нижняя граница максимального уровня ФВК в соответствии с (1) равна

$$\theta_{k}(\tau) = 2^{p}(M-1)-1 = 2^{p+1}-1$$
.

Отметим, что при существовании дополнительных подполей могут появляться не рассмотренные в данном анализе дополнительные решения. Рассматриваемый вариант как раз обладает указанным свойством. Поэтому, скорее всего, будут существовать значения k, при которых уровень ФВК величиной $2^{p+1}-1$ будет превышен. Действительно, при k=47 ($q_k=3$), 61 ($q_k=4$) количество решений M=5, что соответствует уровню $\theta_k(\tau)=2^{p+2}-1$, а при k=19 ($q_k=5$) M=4, что соответствует уровню $\theta_k(\tau)=3\times 2^p-1$.

Bapuahm 4.
$$p = 2^{j}(2q_{p} + 1)$$
; $j > 1$; $q_{p} > 0$, $e_{1} = 2^{2^{j}} + 1$.

Для этого варианта возможен выбор q_k таких, что система (17) имеет два решения, вследствие чего полное число решений M=3 и максимальный уровень Φ BK в соответствии с (1) равен

$$\theta_k(\tau) = 2^p (M-1) - 1 = 2^{p+1} - 1.$$

Таким образом, полученные результаты могут быть использованы как для построения квазиортогональных составных последовательностей типа кодов Голда, так и для предварительной отбраковки заведомо «плохих» комбинаций, например при алгоритмическом формировании ансамблей.

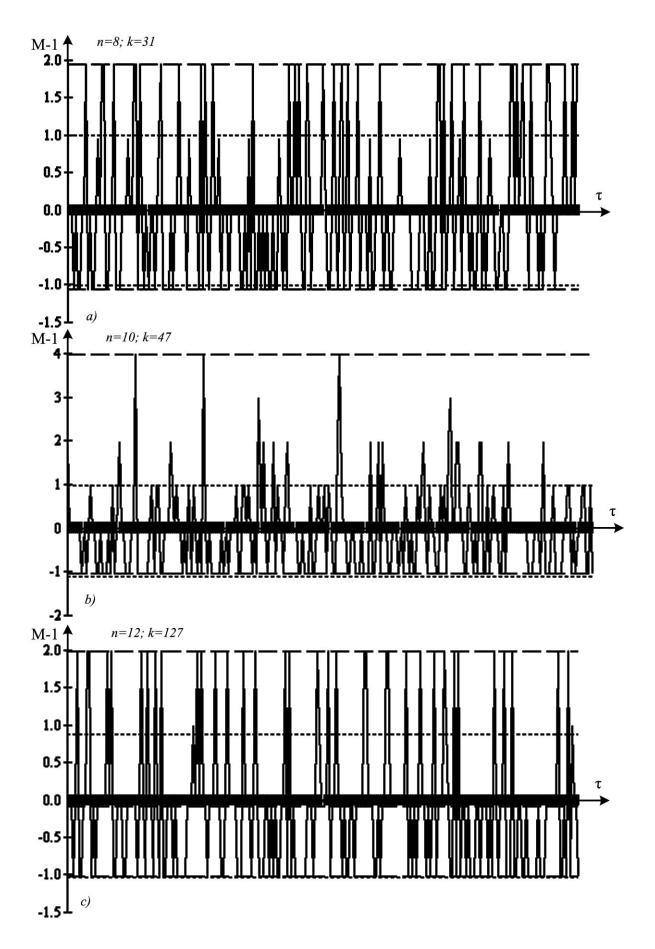


Рис. 3. Фрагменты ФВК

Заключение

Взаимнокорреляционные свойства ансамблей М-последовательностей полностью определяются структурой поля Галуа, из которого они отображаются на пространство двоичных символов. Эта зависимость очень сложная. В случае непростых значений длин Мпоследовательностей $N=2^n-1$ и, особенно, степеней порождающих многочленов nнекоторые важные свойства ФВК удается вскрыть теоретико-числовыми методами. Один из таких методов при четных значениях степеней порождающих многочленов $n=2\,p$ предложен в данной статье. Особенностью метода и построенной на его основе методики оценки характеристик ФВК является их аналитический характер, что несомненно расширяет границы знаний о свойствах этих широко используемых на практике кодовых последовательностей. Рассмотренные в статье примеры применения методики оценивания демонстрируют высокую точность аналитических результатов оценивания. Полученные результаты могут также рассматриваться как стартовая точка для дальнейшего развития метода и дальнейшей детализации свойств ФВК М-последовательностей рассматриваемого подкласса. Кроме того предложенный метод может быть успешно применен и для корреляционных свойств составных кодовых последовательностей, алгебраически связанных с М-последовательностями, в частности, кодов Голда.

Предложенный метод и методика оценивания ФВК может быть полезна при выборе ансамблей сложных кодированных сигналов в асинхронно-адресных и командных авиационно-космических телекоммуникационных системах.

Библиографический список

- 1. Михайлов В.Ю. Регулярный метод синтеза квазиортогональных ансамблей М-последовательностей // Радиотехника и электроника. 1984. №9. С.1838-1840.
- 2. Михайлов В.Ю. О расчете максимальных значений функции взаимной корреляции М-последовательностей // Радиотехника и электроника. 1982. №6. С.1219-1221.
- 3. Михайлов В.Ю., Мазепа Р.Б. Основы теории кодирования. М.: МАИ-ПРИНТ, $2009.-458~\mathrm{c}.$

Сведения об авторах

Владимир Юрьевич Михайлов, доцент Московского авиационного института (национального исследовательского университета), к.т.н., e-mail: mihvj@yandex.ru