УДК 539.22, 539.32

Изменчивость коэффициента Пуассона для гексагональных кристаллов под давлением

Гольдштейн Р.В.*, Городцов В.А.**, Лисовенко Д.С.***

Институт проблем механики им. А.Ю. Ишлинского РАН, проспект Вернадского, 101, корп. 1. Москва, 119526, Россия *e-mail: goldst@ipmnet.ru **e-mail: gorod@ipmnet.ru ***e-mail: lisovenk@ipmnet.ru

Аннотация

Проанализирована изменчивость коэффициента Пуассона для гексагональных кристаллов под давлением. Выявлено семь гексагональных ауксетиков (кристаллов с отрицательным коэффициентом Пуассона) при нулевом давлении - MoS₂, Zn, Be, сплав BeCu (2.4% at.Cu), TiB₂, C₇H₁₂, MnAs. Для этих ауксетиков при нулевом при нулевом (графита SiC) давлении И двух неауксетиков давлении И проанализирована изменчивость коэффициента Пуассона под давлением и построены поверхности ауксетичности (поверхности нулевого коэффициента Пуассона). Показано, что все семь гексагональных ауксетиков могут стать полными ауксетиками при определенных давлениях. Кристаллы графита и SiC также становятся частичными или полными ауксетиками при некотором отрицательном давлении. В результате анализа показано, что все гексагональные кристаллы могут стать ауксетиками.

Ключевые слова: гексагональные кристаллы, ауксетики, давление, упругие свойства.

1. Введение

Влиянию начальных напряжений (давления, в частности) на упругие свойства, структурную устойчивость и идеальную прочность кристаллов посвящена большая литература. Наиболее ранний критерий структурной устойчивости при отсутствии начальных напряжений известен как критерий Борна [1, 2]. Он представляет собой совокупность неравенств для коэффициентов упругости, следующих из требования положительности упругой энергии. Обобщение борновского критерия на случай действия начального внешнего напряжения дано в целом ряде исследований [3-6]. Обобщенный критерий устойчивости состоит из аналогичных неравенств для эффективных коэффициентов упругости, включающих себя В начальные напряжения. В дальнейшем в серии работ [7-10] выполнен анализ обобщенной структурной устойчивости различных кристаллов, находящихся под действием давления, и использованы различные методики расчетов упругих постоянных 2-го, 3-го и 4-го порядков.

В современных исследованиях механического поведения материалов и структур большое внимание уделяется ауксетикам. На ауксетические свойства материалов существенно влияет изотропное напряжение, как при отрицательном, так и положительном давлении [11-14]. В [12] выполнен детальный анализ такого

2

влияния для кубических кристаллов. Ниже аналогичный анализ проведен для гексагональных кристаллов с использованием экспериментальных данных по упругим константам, собранных в справочнике [15]. Рассмотрены условия структурной устойчивости при нулевом и ненулевых начальных давлениях и оценены изменения ауксетичности с изменением давления.

2. Упругие свойства гексагональных кристаллов при нулевом давлении

Коэффициент Пуассона v(**n**, **m**) кристаллов при одноосном растяжении зависит от единичного вектора **n**, характеризующего направление деформирования кристалла, и ортогонального ему единичного вектора **m**. Общий вид этих зависимостей для произвольных анизотропных материалов хорошо известен [16]:

$$\mathbf{v}(\mathbf{n},\mathbf{m}) = -\frac{\mathbf{s}_{ijkl}\mathbf{n}_{i}\mathbf{n}_{j}\mathbf{m}_{k}\mathbf{m}_{l}}{\mathbf{s}_{ijkl}\mathbf{n}_{i}\mathbf{n}_{j}\mathbf{n}_{k}\mathbf{n}_{l}}$$

Удобно использовать взамен тензорных упругих коэффициентов четвертого ранга s_{ijkl} матричные коэффициенты податливости s_{mn} [16,17]. От указанной параметризации ориентации кристаллов с помощью компонент векторов **n**, **m** можно перейти к использованию трех углов Эйлера φ, θ, ψ.

В случае гексагональных кристаллов число независимых матричных коэффициентов упругости равно пяти $(s_{11}, s_{12}, s_{13}, s_{33}, s_{44}; s_{66} = 2(s_{11} - s_{12}))$ и зависимость коэффициента Пуассона от модулей податливости и углов Эйлера можно представить в виде

$$v = -\frac{s_{13} + ((s_{12} - s_{13})\sin^2 \psi + \delta \cos^2 \theta \cos^2 \psi)\sin^2 \theta}{s_{11} + ((s_{33} - s_{11}) - \delta \sin^2 \theta)\cos^2 \theta},$$
(1)

$$\delta \equiv \mathbf{s}_{11} + \mathbf{s}_{33} - 2\mathbf{s}_{13} - \mathbf{s}_{44} \,.$$

Здесь размерный параметр δ - характеристика степени анизотропии гексагональных кристаллов (он исчезает в пределе изотропной среды). Коэффициент Пуассона оказывается зависящим от двух углов Эйлера. Эта зависимость является периодической функцией угловых переменных с периодами T_θ = T_ψ = π.

Численный анализ коэффициента Пуассона показал, что среди гексагональных кристаллов лишь небольшое число оказывается ауксетиками (материалами с отрицательным коэффициентом Пуассона). Поверхность ауксетичности $v(\theta, \psi) = 0$ для гексагональных ауксетиков, на которой коэффициент Пуассона обращается в нуль, описывается согласно (1) уравнением вида

$$\left(\Pi_2 \sin^2 \psi + \Pi_{02} \cos^2 \theta \cos^2 \psi\right) \sin^2 \theta = -1.$$
(2)

$$\Pi_{02} \equiv \frac{\delta}{s_{13}}, \qquad \Pi_2 \equiv \frac{s_{12} - s_{13}}{s_{13}}.$$

Это уравнение позволяет оценить направления растяжения, для которых имеет место отрицательные значения коэффициента Пуассона. На основе экспериментальных данных для коэффициентов податливости гексагональных кристаллов, собранных в [15] выявлены семь гексагональных ауксетиков - MoS_2 , C_7H_{12} , Zn, MnAs, BeCu (2.4at%Cu), TiB₂, Be. На Рис.1 приведены поверхности коэффициентов Пуассона для гексагональных ауксетиков MoS_2 , Zn, Be, TiB₂, C_7H_{12} и MnAs. Поверхность коэффициента Пуассона для сплава BeCu не приведена, так как слабо отличается от поверхности Be.

Рис.1. Поверхности коэффициентов Пуассона гексагональных ауксетиков MoS₂ (a), Zn (б), Be (в), TiB₂ (г), C₇H₁₂ (д) и MnAs (е) при нулевом давлении

Экстремальные значения коэффициента Пуассона и их положения на плоскости углов θ , ψ находятся с помощью формулы (2) и решений системы уравнений

$$\sin^2 \theta \sin 2\psi \left(\Pi_2 - \Pi_{02} \cos^2 \theta \right) = 0, \qquad (3)$$

$$\sin 2\theta \left[\Pi_{1} + \Pi_{01} \cos 2\theta + \Pi_{2} \sin^{2} \psi \left(1 + \Pi_{1} - \Pi_{01} \sin^{4} \theta \right) + \Pi_{02} \cos^{2} \psi \left(\cos 2\theta + \Pi_{1} \cos^{4} \theta \right) \right] = 0.$$
(4)

$$\Pi_{01} \equiv \frac{\delta}{s_{11}}, \quad \Pi_1 \equiv \frac{s_{33} - s_{11}}{s_{11}}$$

Значение

$$v_1 = -\frac{s_{13}}{s_{33}} \tag{5}$$

достигается на прямой линии $\theta = 0$ при произвольном угле ψ , что соответствует растяжению в направлении [001] ($v_1 = v_{[001]}$). Значения

$$v_2 = -\frac{s_{13}}{s_{11}} \tag{6}$$

И

$$\mathbf{v}_3 = -\frac{\mathbf{s}_{12}}{\mathbf{s}_{11}} \tag{7}$$

в точках $\theta = \pi/2$, $\psi = 0$ и $\theta = \psi = \pi/2$, соответственно. Последние два значения получаются при растяжении в направлении [010], и $v_2 = v_{[100],[010]}$, $v_3 = v_{[00\bar{1}],[010]}$. Существование других экстремумов возможно при выполнении определенных ограничений на безразмерные комплексы коэффициентов податливости, т.е. для некоторых конкретных гексагональных кристаллов. Экстремальные значения коэффициента Пуассона имеют вид

$$v_{4,5} = -\frac{s_{13}}{s_{11}} \frac{1 + 0.25\Pi_{02}\sin^2 2\theta}{1 + \Pi_1\cos^2 \theta - 0.25\Pi_{01}\sin^2 2\theta}$$
(8)

при следующих ограничениях

$$\psi = 0, \quad 0 \le \cos^2 \theta_{4,5} = \frac{-(\Pi_{01} + \Pi_{02}) \pm \sqrt{D_1}}{\Pi_1 \Pi_{02}} \le 1, \tag{9}$$

$$\mathbf{D}_{1} = (\Pi_{01} + \Pi_{02})^{2} - \Pi_{1}\Pi_{02}(\Pi_{1} - \Pi_{01} - \Pi_{02}) \ge 0.$$
 (10)

При ограничениях

$$\psi = \pi/2, \quad 0 \le \sin^2 \theta_{6,7} = \frac{-\Pi_{01} \pm \sqrt{D_2}}{\Pi_{01} \Pi_2} \le 1,$$
(11)

$$D_{2} = \Pi_{01}^{2} + \Pi_{01}\Pi_{2}(\Pi_{1} + \Pi_{01} + \Pi_{2} + \Pi_{1}\Pi_{2}) \ge 0$$
(12)

имеют место экстремальные значения коэффициента Пуассона

$$v_{6,7} = -\frac{s_{13}}{s_{11}} \frac{1 + \Pi_2 \sin^2 \theta}{1 + \Pi_1 \cos^2 \theta - 0.25 \Pi_{01} \sin^2 2\theta}.$$
 (13)

Для

$$\cos^2 \theta = \frac{\Pi_2}{\Pi_{02}}, \quad \cos^2 \psi = \frac{A}{B},$$
 (14)

$$A = (\Pi_1 - \Pi_{01})\Pi_{02}^2 + \Pi_2 [\Pi_{02}(1 + \Pi_1 + 2\Pi_{01}) - \Pi_1(\Pi_{02}^2 + \Pi_2^2 - 2\Pi_2\Pi_{02})],$$
$$B = \Pi_{02}(\Pi_{02} - \Pi_2)(\Pi_{02} + \Pi_1\Pi_2) + \Pi_{01}\Pi_2(\Pi_{02}^2 + 2\Pi_2\Pi_{02} - \Pi_2^2)$$

определяется экстремальное значение коэффициента Пуассона v₈.

В Табл.1 приведены числовые значения для всех экстремальных значений коэффициентов Пуассона гексагональных ауксетиков. Полужирным выделены

максимальные и минимальные значения. У MoS_2 и Zn экстремальное значение коэффициента Пуассона v_3 оказывается отрицательным из-за того, что у этих кристаллов $s_{13} > 0$. Наименьшее отрицательное значение коэффициента Пуассона $v_{min} = -0.28$ достигается в случае монокристалла дисульфида молибдена MoS_2 . Среди указанных выше гексагональных ауксетиков не выявлены экстремумы v_4 и v_7 (см. Табл.1).

Табл.1. Экстремальные значения коэффициента Пуассона гексагональных кристаллов с отрицательным минимальным коэффициентом Пуассона.

Гексаго-	ν_1	v_2	ν ₃	ν_4	ν_{5}	$\nu_{_6}$	v_7	ν_8
нальный								
кристалл								
MoS ₂	0.12	0.58	-0.28	—	_	_	_	—
C ₇ H ₁₂	0.39	0.18	0.76	—	-0.15	0.99	—	—
Zn	0.25	0.85	-0.07	—	0.07	0.28	—	—
MnAs	0.22	0.08	0.19	—	-0.04	0.24	—	—
ВеСи сплав	0.01	0.01	0.10	—	-0.04	—	—	—
(2.4at%Cu)								
TiB ₂	0.29	0.45	0.38	_	-0.03	0.54	-	0.40
Ве	0.02	0.01	0.08	_	-0.005	_	_	_

3. Влияние давления на упругие свойства гексагональных кристаллов

В случае изотропного начального напряжения, т.е. при давлении р, происходит изменение коэффициентов упругой жесткости с сохранением их полной фойгтовской симметрии

$$\mathbf{C}_{ijkl} = \mathbf{C}_{jikl} = \mathbf{C}_{klij}.$$

Зависимость коэффициентов жесткости от давления при этом для кристаллов всех кристаллических систем имеет общий вид [6]

$$C_{ijkl} = c_{ijkl} + p(\delta_{ij}\delta_{kl} - \delta_{ik}\delta_{jl} - \delta_{jk}\delta_{il}).$$

В частном случае гексагональных кристаллов при матричной записи коэффициентов жесткости получим

$$C_{11} = c_{11} - p, \quad C_{12} = c_{12} + p, \quad C_{13} = c_{13} + p,$$

$$C_{33} = c_{33} - p, \quad C_{44} = c_{44} - p, \quad C_{66} = 0.5(c_{11} - c_{12}) - p. \quad (15)$$

Положительная определенность энергии деформации накладывает на упругие константы следующие термодинамические ограничения

$$C_{11} > 0, C_{11} - C_{12} > 0, C_{11} + C_{12} > 0,$$

 $C_{33} > 0, C_{44} > 0, C_{33}(C_{11} + C_{12}) - 2C_{13}^2 > 0.$

Используя эти неравенства и формулы (18), термодинамические ограничения можно записать в виде

$$c_{11} > p, \quad c_{33} > p, \quad c_{44} > p, \quad c_{11} - c_{12} - 2p > 0,$$

 $2p^{2} + (c_{11} + c_{12} + 4c_{13})p - (c_{33}(c_{11} + c_{12}) - 2c_{13}^{2}) < 0.$ (16)

С помощью этих неравенств получаются ограничения на прикладываемые значения давления, при которых кристалл остается устойчивым.

Для дальнейшего анализа экстремальных значений упругих характеристик будем использовать связь между эффективными модулями податливости и эффективными модулями жесткости [6,17]

$$S_{11} + S_{12} = \frac{C_{33}}{C^2}, \quad S_{11} - S_{12} = \frac{1}{C_{11} - C_{12}}, \quad S_{13} = -\frac{C_{13}}{C^2},$$
$$S_{33} = \frac{C_{11} + C_{12}}{C^2}, \quad S_{44} = \frac{1}{C_{44}},$$
$$C^2 = C_{33}(C_{11} + C_{12}) - 2C_{13}^2.$$

Полученные в пункте 2 формулы можно применять для численного анализа влияния давления на упругие свойства гексагональных кристаллов. Для этого в формулах (1)-(14) необходимо сделать замену s_{ii} на S_{ii}.

Численный поверхностей ауксетичности $v(\theta, \psi; p) = 0$ анализ для гексагональных ауксетиков показывает, что топология этих поверхностей сильно зависит от модулей жесткости материалов и давления (см. Рис.2). Для MoS₂ зона ауксетичности находится под изображенной поверхностью ауксетичности на Рис.2а. При увеличении сжимающего давления зона ауксетичности будет уменьшаться. В обратной ситуации, когда увеличивается отрицательное давление, зона ауксетичности будет увеличиваться, и при давлениях p < -38.2 ГПа кристалл MoS₂ При p = -38.2 ГПа обращается в становится полным ауксетиком. нуль экстремальное значение v_5 (8).

10

Рис.2. Поверхности ауксетичности $v(\phi, \theta; p) = 0$ гексагональных ауксетиков MoS_2

(а), Zn (б), Be (в), TiB₂ (г), C₇H₁₂ (д) и MnAs (е)

Ниже будет проведен численный анализ влияния давления для трех экстремальных значений коэффициента Пуассона v₁, v₂, v₃, т.к. эти экстремумы, в отличие от других пяти, существуют во всем диапазоне изменения давления, при которых кристалл остается устойчивым.

Формулу для экстремального значения коэффициента Пуассона v₁ (5) можно записать через модули жесткости и давление в виде

$$\mathbf{v}_1 = -\frac{\mathbf{S}_{13}}{\mathbf{S}_{33}} = \frac{\mathbf{C}_{13}}{\mathbf{C}_{11} + \mathbf{C}_{12}} = \frac{\mathbf{c}_{13} + \mathbf{p}}{\mathbf{c}_{11} + \mathbf{c}_{12}}.$$
 (17)

Коэффициент Пуассона v₁ оказывается линейно зависящим от давления и обращается в нуль при $p = -c_{13}$. Для упругих констант гексагональных материалов, представленных в справочнике [15], справедлива положительность модуля жесткости c_{13} . В силу $c_{13} > 0$ и $(c_{11} + c_{12}) > 0$ коэффициент Пуассона v₁ будет отрицательным при $p < -c_{13}$, т.е. при изотропном растяжении. Анализ формулы для коэффициента Пуассона v₂, записанной через модули жесткости и давление, показывает, что коэффициент v₂ будет отрицательным также при $p < -c_{13}$. В случае условия v₃ = 0 значение давления находится из решения квадратного уравнения $3p^2 - (c_{33} - c_{12} - 4c_{13})p - (c_{12}c_{33} + 2c_{13}^2) = 0$.

Согласно приведенному выше анализу для MoS_2 коэффициенты Пуассона v_1 и v_2 будут отрицательными при р < -23 ГПа, а коэффициент v_3 будет оставаться отрицательным всегда. На Рис.За изображены зависимости коэффициентов Пуассона v_1 , v_2 и v_3 для кристалла MoS_2 от давления в диапазоне давлений, соответствующих устойчивости кристалла. Наибольшее изменение наблюдается у

коэффициента $v_2 -$ от $v_2 = -1.31$ при $p_{min} = -163$ ГПа до $v_2 = 1.97$ при $p_{max} = 18.5$ ГПа. Коэффициент v_1 меняется в диапазоне от $v_1 = -0.76$ при $p_{min} = -163$ ГПа до $v_1 = 0.23$ при $p_{max} = 18.5$ ГПа. Наименьшее значение коэффициента Пуассона v_3 по модулю ($v_3 = -0.27$) соответствуют p = -8 ГПа. При этом значения v_3 при p_{min} и p_{max} : $v_3 = -1$ при $p_{min} = -163$ ГПа и $v_3 = -0.53$ при $p_{max} = 18.5$ ГПа.

Рис.3. Изменчивость коэффициентов Пуассона v₁, v₂ и v₃ с изменением давления для гексагональных ауксетиков при нулевом давлении MoS₂ (a), Zn (б), Be (в), TiB₂ (г), C₇H₁₂ (д) и MnAs (е). Зона I соответствует отсутствию ауксетичности, зона II – частичной ауксетичности и зона III – полной ауксетичности.

У кристалла Zn при увеличении сжимающего давления зона ауксетичности увеличивается (Рис.26). При значениях p > 7.59 ГПа появляется дополнительные четыре зоны ауксетичности, связанные с тем, что становится отрицательным экстремум v_5 . Минимальное значение коэффициента v_5 равно -5.8 при p = 16.5 ГПа. В обратной ситуации, при увеличении растягивающего давления зона ауксетичности уменьшается и при давлении p = -14 ГПа ауксетичность исчезает. При дальнейшем увеличении растягивающего давления ауксетичность опять появится при p = -20.7 ГПа. Такая смена знака соответствует экстремальному значению коэффициента Пуассона v_3 (Рис.36). Из Рис.26 видно, что в зависимости от значений давления кристалл Zn может быть как неауксетиком, так и частичным и полным ауксетиком. Полным ауксетиком Zn станет при $p < -c_{13} = -50$ ГПа, что

соответствует смене знака у экстремальных значений коэффициента Пуассона v_1 и v_2 . На Рис.3б изображены зависимости коэффициентов v_1 , v_2 и v_3 от давления. Наибольшая изменчивость наблюдается у коэффициента v_2 - от $v_2 = -1.19$ при $p_{min} = -214$ ГПа до $v_2 = 2.91$ при $p_{max} = 16.5$ ГПа. Границы изменчивости коэффициента Пуассона будут от $v_1 = -0.84$ при $p_{min} = -214$ ГПа до $v_1 = 0.34$ при $p_{max} = 16.5$ ГПа. Значения v_3 будут равны $v_3 = -1$ при $p_{min} = -214$ ГПа и $v_3 = 0.98$ при $p_{max} = 16.5$ ГПа. Максимальное значение коэффициента v_3 равно 0.002 при p = -17.2 ГПа.

Кристалл Ве при нулевом давлении является частичным ауксетиком. При приложении сжимающего давления Ве остается частичным ауксетиков до p = 2.18 ГПа (Рис.2в), когда поменяет знак экстремальное значение коэффициента Пуассона v₅. При дальнейшем увеличении давления до значения 121 ГПа кристалл Ве остается неауксетиком, когда снова поменяет знак экстремум v₅. От 121 ГПа и до 133 ГПа (до границы устойчивости) кристалл Ве будет частичным ауксетиком. При рассмотрении случая изотропного растяжения зона ауксетичности будет расти. Существенное увеличение зоны произойдет при $p < -c_{13} = -6$ ГПа, что будет соответствовать смене знака у экстремальных значений коэффициентов Пуассона v₁ и v₂. При дальнейшем увеличении растягивающего давления кристалл Ве станет полным ауксетиком. Это произойдет при смене знака у коэффициента Пуассона v_3 (p = -23.2 ГПа). Изменчивости коэффициентов Пуассона v_1 , v_2 и v_3 отражены на Рис.3в. Наибольшая изменчивость наблюдается у коэффициента v_3 - от $v_3 = -1$ при $p_{min} = -334$ ГПа до $v_3 = 1$ при $p_{max} = 133$ ГПа. Границы изменчивости коэффициентов Пуассона v_1 и v_2 будут от $v_1 = -1.04$ при $p_{min} = -334$ ГПа до $v_1 = 0.44$ при $p_{max} = 133$ ГПа и $v_2 = -0.96$ при $p_{min} = -334$ ГПа до $v_2 = 0.002$ при $p_{max} = 133$ ГПа. Как видно из Рис.3в коэффициенты Пуассона v_1 , v_2 и v_3 для кристалла Ве слабо отличаются при фиксированном отрицательном давлении.

При сжимающем давлении кристалл TiB₂ остается частичным ауксетиком (Рис.2г). При увеличении давления зона ауксетичности увеличивается. При значениях давления p > 97 ГПа появляется еще одна зона ауксетичности, связанная с тем, что экстремум коэффициента Пуассона v_3 меняет знак при p = 97 ГПа. При увеличении давления при изотропном растяжении зона ауксетичности уменьшается до значений близких к – 50 ГПа, далее зона ауксетичности начинает увеличиваться. Существенное увеличение зоны произойдет при смене знака у коэффициентов Пуассона v_1 и v_2 при $p = -c_{13} = -320$ ГПа. При p < -402 ГПа кристалл TiB₂ станет полным ауксетиком. На Рис.3в изображены зависимости коэффициентов Пуассона v_1, v_2 и v_3 для кристалла TiB₂. Наибольшая изменчивость наблюдается у коэффициента v_2 - от $v_2 = -1.13$ при $p_{min} = -1297$ ГПа до $v_2 = 2.54$ при $p_{max} = 107$ ГПа. Границы изменчивости коэффициентов Пуассона v_1 и v_3 будут от $v_1 = -0.89$ при $p_{min} = -1297$ ГПа до $v_1 = 0.39$ при $p_{max} = 107$ ГПа и от $v_3 = -1$ при $p_{min} = -1297$ ГПа до v₃ = -0.98 при р_{max} = 107 ГПа.

На Рис.2д представлена поверхность ауксетичности ν(φ, θ; p) = 0 для кристалла C₇H₁₂. Как видно из рисунка при увеличении сжимающего давления зона

При увеличении ауксетичности растет. отрицательного давления зона ауксетичности уменьшается и исчезает при p = -0.16 ГПа. При этом значении давления коэффициент Пуассона v_5 равен нулю. В следующий раз коэффициент v_5 равен нулю уже при p = -2.5 ГПа, когда кристалл $C_7 H_{12}$ снова станет частичным ауксетиком. Полным ауксетиком данный кристалл будет при р < -3.55 ГПа. На Рис.3д отражена изменчивость коэффициентов Пуассона v_1 , v_2 и v_3 под давлением. Наибольшая изменчивость наблюдается у коэффициента v_3 - от $v_3 = -0.99$ при $p_{min} = -10.3$ ГПа до $v_3 = 0.98$ при $p_{max} = 0.2$ ГПа. Границы изменчивости коэффициентов Пуассона v_1 и v_2 будут от $v_1 = -0.96$ при $p_{min} = -10.3$ ГПа до $\nu_1=0.42~$ при $p_{max}=0.2~\Gamma\Pi a$ и от $\nu_2=-1.01$ при $p_{min}=-10.3~\Gamma\Pi a$ до $\nu_2=0.01$ при $p_{max} = 0.2 \ \Gamma \Pi a.$

У кристалла MnAs при увеличении сжимающего давления до значений близких к 4 ГПа зона ауксетичности уменьшается, а за этим значением давления начинает (Рис.2е). При увеличении отрицательных расти давлений зона всегда увеличивается. Полным ауксетичности ауксетиком кристалл MnAs становится при значениях р < -с₁₃ = -11 ГПа. На Рис.3е отражена изменчивость коэффициентов Пуассона v1, v2 и v3 под давлением для кристалла MnAs. Наибольшая изменчивость наблюдается у коэффициентов v_3 : от $v_3 = -1$ при $p_{min} = -80.3$ ГПа до v₃ = 1 при p_{max} = 15.9 ГПа. Границы изменчивости коэффициентов Пуассона v_1 и v_2 будут от $v_1 = -1.39$ при $p_{min} = -80.3$ ГПа до

 $v_1 = 0.54$ при $p_{max} = 15.9$ ГПа и от $v_2 = -0.72$ при $p_{min} = -80.3$ ГПа до $v_2 = 0.0003$ при $p_{max} = 15.9$ ГПа.

Рассмотрим далее влияние давления на коэффициент Пуассона для графита и карбида кремния SiC, которые при нулевом давлении не являются ауксетиками. При положительных значениях давления данные материалы остаются неауксетиками (Рис.4а и б), а экстремальные значения коэффициентов Пуассона $\nu_1, \ \nu_2$ и ν_3 увеличиваются с увеличением сжимающего давления. При изотропном растяжении оба эти кристалла могут стать ауксетиками. Графит становится частичным ауксетиком при р < $-c_{13} = -15$ ГПа при смене знака у коэффициентов Пуассона v_1 и v_2 . Полным ауксетиком графит будет при р < -114 ГПа, когда коэффициент v_3 станет отрицательным. На Рис.4в изображены зависимости коэффициентов Пуассона $\nu_1,\,\nu_2$ и ν_3 для кристалла графита. Наибольшее изменение наблюдается у коэффициента v_2 - от $v_2 = -1.86$ при $p_{min} = -682$ ГПа до $v_2 = 0.49$ при $p_{max} = 3.99$ ГПа. Коэффициенты v_1 и v_3 меняется в диапазоне от $v_1 = -0.54$ при $p_{min} = -682$ ГПа до $\nu_{_1} = 0.02$ при $p_{_{max}} = 3.99$ ГПа и от $\nu_{_3} = -1$ при $p_{_{min}} = -682$ ГПа до $\nu_{_3} = 0.17$ при p_{max} = 3.99 ГПа. Кристалл SiC становится частичным ауксетиком при $p < -c_{13} = -56$ ГПа, а при p < -122 ГПа - полным ауксетиком. Значение p = -56 ГПа соответствует смене знака у коэффициентов Пуассона v_1 и v_2 , а p = -122 ГПа у коэффициента v₅. На Рис.4г представлены зависимости коэффициентов Пуассона v₁, v₂ и v₃ для кристалла SiC. Наибольшая изменчивость наблюдается у коэффициента v_3 - от $v_3 = -1$ при $p_{min} = -660$ ГПа до $v_3 = 0.66$ при $p_{max} = 168$ ГПа.

Границы изменчивости коэффициентов Пуассона v_1 и v_2 будут от $v_1 = -1.01$ при $p_{min} = -660$ ГПа до $v_1 = 0.38$ при $p_{max} = 168$ ГПа и от $v_2 = -0.99$ при $p_{min} = -660$ ГПа до $v_2 = 0.19$ при $p_{max} = 168$ ГПа.

Рис.4. Поверхности ауксетичности $v(\phi, \theta; p) = 0$, и изменчивость коэффициентов Пуассона v_1 , v_2 и v_3 с изменением давления для гексагональных неауксетиков при нулевом давлении графита (а), (в) и SiC (б), (г). Зона I соответствует отсутствию

ауксетичности, зона II – частичной ауксетичности и зона III – полной ауксетичности.

4. Заключение

Численно-аналитический анализ коэффициента Пуассона позволяет выявить семь гексагональных ауксетиков при нулевом давлении - MoS₂, Zn, TiB₂, MnAs, Be, сплав BeCu, C₇H₁₂. Анализ влияния давления на коэффициент Пуассона показывает, что ауксетиками во всем диапазоне значений давлений, при которых кристалл остается устойчивым, являются кристаллы MoS_2 , TiB₂ и MnAs. Ауксетики Be, сплав BeCu, C₇H₁₂ и Zn имеют одну зону неауксетичности в некотором диапазоне изменения давления. При этом у кристалла цинка зона неауксетичности мала. Глобальный минимум коэффициента Пуассона в этой области близок к нулю. Численно-аналитический анализ коэффициента Пуассона показал, что при $p = -c_{13}$ многие гексагональные кристаллы становятся частичными ауксетиками или полными ауксетиками. Коэффициент Пуассона, соответствующий растяжению в направлении [010] и поперечной деформации в направлении $[00\overline{1}]$, стремится к -1 при стремлении отрицательного давления к границе устойчивости MoS₂, Zn, TiB₂, MnAs, Be, сплава BeCu, C_7H_{12} , графита и SiC кристалла.

Работа выполнена в рамках Программы фундаментальных исследований Президиума РАН № 1.1, гранта Президента РФ для государственной поддержки молодых российских учёных – кандидатов наук MK-5891.2015.1.

Библиографический список

- Born M. On the stability of crystal lattices // Mathematical Proceedings of the Cambridge Philosophical Society. 1940. V.36. N 2. P.160-172.
- Born M., Huang K. Dynamical theory of crystal lattices. Clarendon, L.-N.Y.: Oxford University Press. 1954. 420p.
- Huang K. On the atomic theory of elasticity // Proceedings of the Royal Society A. 1950. V.203. N 1073. P.178-194.
- Leibfried G., Ludwig W. Theory of anharmonic effects in crystals // Solid State Physics. 1961. V.12. P.275-444.
- Barron T.H.K., Klein M.L. Second-order elastic constants of a solid under stress // Proceedings of the Physical Society. 1965. V.85. N 3. P.523-532.
- 6. Wallace D.C. Thermodynamics of crystals. New York: Wiley. 1972. 485p.
- Векилов Ю.Х., Красильников О.М. Структурные превращения в металлах при больших степенях сжатия // Успехи физических наук. 2009. Т.179. № 8. С.883– 886.
- Красильников О.М., Векилов Ю.Х., Мосягин И.Ю. Упругие постоянные твердых тел при высоких давлениях // Журнал экспериментальной и теоретической физики. 2012. Т.142. № 2. С.266-270.
- Векилов Ю.Х., Красильников О.М., Белов М.П., Луговской А.В. Деформационные фазовые переходы в металлах при высоких давлениях // Успехи физических наук. 2014. Т.184. № 9. С.967–973.

- Векилов Ю.Х., Красильников О.М., Луговской А.В. Упругие свойства твёрдых тел при высоких давлениях // Успехи физических наук. 2015. Т.185. № 11. С.1215–1224.
- Wojciechowski K.W. Negative Poisson ratios at negative pressures // Molecular Physics Reports. 1995. V.10. P.129-136.
- Branka A.C., Heyes D.M., Wojciechowski K.W. Auxeticity of cubic materials under pressure // Physica Status Solodi B. 2011. V.248. N 1. P.96-104.
- Grima J.N., Cassar R.N., Gatt R. On the effect of hydrostatic pressure on the auxetic character of NAT-type silicates // Journal of Non-Crystalline Solids. 2009. V.355. N 24-27. P.1307-1312.
- Grima J.N., Gatt R. On the behaviour of natrolite under hydrostatic pressure // Journal of Non-Crystalline Solids. 2010. V.356, N 37-40. P.1881-1887.
- Landolt-Börstein Group III Condensed Matter. Berlin: Springer. 1992. V.29a. P.105-128.
- Сиротин Ю.И., Шаскольская М.П. Основы кристаллофизики. М.: Наука, 1975. –
 680 с.
- 17. Най Дж. Физические свойства кристаллов. М.: Изд-во ИЛ, 1967. 386 с.