The method of formation of the optimum modes of the operated movement of tethered systems at the solution of practical tasks

Innovation technologies in aerospace activities


Аuthors

Kupreev S. A.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

e-mail: kupreevsa@mati.ru

Abstract

To determine the major trends of application of tethered systems performing a wide range of practical tasks in space the effective method of optimum schemes formation of tethered systems operated movement based on the general integrated approach application is offered:

— determination according to preliminary data of the list of tasks which are reasonable to solve, using tethered systems [1–10];

— development of management methods of the relative movement of the connected objects in the course of expansion and functioning of tethered systems;

— determination of the possible modes of the movement of tethered system objects based on research of the sel ected management methods;

— determination of set of modes of tethered system movement by which each of the practical tasks can be solved;

— development of efficiency indicators allowing carrying out a comparative assessment of various modes of the movement of a sheaf for the solution of the considered task, and define a positive effect of the solution of this task with application of tethered system compared to traditionally used technical means;

— selection of such practical tasks where the use of the tethered system solution is reasonable, and to defining the modes of the movement of a sheaf which give the greatest effect fr om application of tethered system.

The realization of this approach is possible due to mathematical models of the operated movement of the connected objects in the form of nonlinear autonomous dynamic systems. For these dynamic systems based on the qualitative theory apparatus of dynamic systems and the theory of bifurcations [11, 12] such methods have been worked out and the studies of the operated movement of tethered systems have been carried out. The results give a general idea of the efficiency of application of tethered systems for the solution of the practical tasks considered in the paper.

Keywords:

tethered system, application of technology space tethers, modes of relative motion, placing into orbit

References

  1. Danilenko A.V., Elkin K.A., Lyagushina S.Ts. Vos’moi mezhdunarodnyi aerokosmicheskii kongress IAC’15 «Proekt programmy poetapnogo osvoeniya perspektivnoi kosmicheskoi tekhnologii — orbital’nykh trosovykh system», Moscow, 2015, pp. 312-313.

  2. Alpatov A.P., Beletskii V.V., Dranovskii V.I., Zakrzhevskii A.E., Pirozhenko A.V., Troger G., Khoroshilov V.S. Dinamika kosmicheskikh sistem s trosovymi i sharnirnymi soedineniyami (Dynamics of space systems with cable and pivot connection), Izhevsk, Institut komp’yuternykh issledovanii, 2007, 559 р.

  3. Beletskii V.V., Levin E.M. Dinamika kosmicheskikh trosovykh sistem (Dynamics of space tether systems), Moscow, Nauka, 1990, 336 p.

  4. Ivanov V.A., Kupreev S.A., Liberzon M.R. Kosmicheskie trosovye sistemy. Nekotorye aspekty prakticheskogo ispol’zovaniya (Space tether systems. Some aspects for practical use: monograph), Moscow, SIP RIA, 2005, 100 p.

  5. Ivanov V.A., Kupreev S.A., Liberzon M.R. Sblizhenie v kosmose s ispol’zovaniem trosovykh sistem (The convergence in space with the using of tethered systems), Мoscow, Khoruzhevskii, 2010, 360 p.

  6. Ivanov V.A., Kupreev S.A., Ruchinskii V.S. Orbital’noe funktsionirovanie svyazannykh kosmicheskikh ob"ektov (Orbital functioning of the connected space objects), Moscow, INFRA-M, 2014, 320 p.

  7. Shcherbakov V.I. Mekhanika statsionarnykh dvizhenii gibko svyazannykh KA (Mechanics of steady motions of flexibly connected spacecrafts), St.Petersburg, Voenno-kosmicheskaya akademiya im. A.F. Mozhaiskogo, 2007, 106 p.

  8. Voloshenyuk O.L., Pirozhenko A.V., Khramov D.A. Kosmicheskaya nauka i tekhnologiya, 2011, vol. 17, no. 2, pp. 32-44.

  9. Cosmo M. L., Lorenzini E. C. Tethers in Space Handbook, NASA Marshall Space Flight Center, Huntsville, Ala, USA, 3rd edition, 1997, 274 p.

  10. Aslanov V.S., Ledkov A.S. Dynamics of the Tethered Satellite Systems. Cambridge: Woodhead Publishing Limited, 2012, 331 p.

  11. Andronov A.A., Leontovich E.A., Gordon I.I., Maier A.G. Kachestvennaya teoriya dinamicheskikh sistem vtorogo poryadka (Qualitative theory of dynamic systems of the second order), Moscow, Nauka, 1960, 568 p.

  12. Andronov A.A., Leontovich E.A., Gordon I.I., Maier A.G. Teoriya bifurkatsii dinamicheskikh sistem na ploskosti (The theory of bifurcations of dynamic systems on plane), Moscow, Nauka, 1967, 488 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2021 by MAI

Вход