Model for rapid detection and compensation of deliberate external influences in the led communication channel of a small airborne radar


Аuthors

Kuzmenko V. P., Nenashev V. A.*, Soleny S. V.

Saint Petersburg State University of Aerospace Instrumentation, 67, Bolshaya Morskaya str., Saint Petersburg, 190000, Russia

*e-mail: nenashev.va@yandex.ru

Abstract

The technology of in-packet, real-time detection and mitigation of intentional optical interference in an LED-based visible-light communication (VLC) link for a compact multichannel airborne radar is considered. An original packet protocol is presented that uses a known preamble for coarse synchronization and background estimation and a control sequence for intra-packet diagnostics under a Poisson count model. Four threat classes are addressed: steady receiver glare, short impulsive flashes, replay of previously recorded signal fragments, and spoofing of a legitimate start via a false preamble. Detection statistics include a stable background shift on control zeros, exceedance counting for impulsive events, a normalized inter-slot dependence coefficient for replay, and a template-mismatch rate for preamble spoofing. Two intra-packet adaptation mechanisms are introduced-dynamic threshold update with local outlier suppression and controlled redundancy/re-timing of optical pulses-both preserving the end-to-end delay budget. The description is accompanied by block diagrams and timing plots illustrating the diagnostic sequence and decision flow. Preference is given to a unified decision basis built on Poisson statistics with detector thresholds preset to required false-alarm levels, enabling low computational overhead. Experimental results in a representative simulation campaign (typical geometry, background illumination, and all four interference types) demonstrate reliable early detection (≈ 0.85 true-positive at ≈ 0.12 false-alarm) and sustained payload delivery via intra-packet adaptation, including BER reduction under impulsive interference compared with a non-adaptive baseline.

Keywords:

edge-lit LED emitter, visible light communication, VLC, intentional interference compensation, visible light information transmission

References

  1. Zhang, X.; Klevering, G.; Lei, X.; Hu, Y.; Xiao, L.; Tu, G.-H. (2023). The Security in Optical Wireless Communication: A Survey. ACM Computing Surveys, 55(14s), Article 329. https://doi.org/10.1145/3594718
  2. Örnek, C.; Kartal, M. (2023). Securing the Future: A Resourceful Jamming Detection Method Utilizing the EVM Metric for Next-Generation Communication Systems. Electronics, 12, 4948. https://doi.org/10.3390/electronics12244948
  3. Solyonyj, S. V.; Nenashev, V. A.; Kuzmenko, V. P. (2025). Aviatsionnyy kontrol’ zemnoy poverkhnosti na osnove formirovaniya videokadrov i metodov gruppovogo tekhnicheskogo zreniya: monografiya [Aviation Control of the Earth’s Surface Based on Frame Formation and Group Technical Vision Methods: Monograph]. Saint Petersburg: GUAP. 186 p. ISBN 978-5-8088-2062-3. [in Russian]
  4. Goncharenko, Ya. V. (2025). Osushchestvlenie navigatsii bespilotnykh vozdushnykh sudov v zone deystviya nazemnykh radiotekhnicheskikh sistem [Navigation of Unmanned Aerial Vehicles within the Coverage of Ground-Based Radio-Technical Systems]. Trudy MAI, no. 142. [in Russian]
  5. Gorbunov, S. A.; Nenashev, V. A.; Mazhitov, M. V.; Khadur, A. A. (2022). Algoritm otsenivaniya koordinat sostoyaniya vertolyota v bortovoy radiolokatsionnoy stantsii [Algorithm for Estimating the State Coordinates of a Helicopter in an Onboard Radar Station]. Trudy MAI, no. 127. [in Russian]
  6.  Weng, H.; Wang, W.; Chen, Z.; Zhu, B.; Li, F. (2024). A Review of Indoor Optical Wireless Communication. Photonics, 11, 722. https://doi.org/10.3390/photonics11080722
  7. Nasution, M. R. A.; Herfandi, H.; Sitanggang, O. S.; Nguyen, H.; Jang, Y. M. (2024). Proximity-Based Optical Camera Communication with Multiple Transmitters Using Deep Learning. Sensors, 24, 702. https://doi.org/10.3390/s24020702
  8. Akhmedov, E. M. (2025). Voprosy optimizatsii raspolozheniya tsentra priema i upravleniya razvedyvatel’nymi BPLA s uchetom otrazheniy signala ot gorodskikh zastroek [Issues of Optimizing the Location of the Reception and Control Center for Reconnaissance UAVs Considering Reflections from Urban Buildings]. Trudy MAI, no. 142. [in Russian]
  9. Glushkov, A. N.; Korataev, P. D.; Chastukhin, K. R.; Tolstykh, M. Yu. (2025). Sposob demodulyatsii biortogonal’nykh signalov s dvoichnoy fazovoy manipulyatsiey [A Method of Demodulating Biorthogonal Signals with Binary Phase Shift Keying]. Trudy MAI, no. 142. [in Russian]
  10. Ananyev, A. V.; Pechkarev, V. A. (2025). Algoritm otsenki koeffitsientov priznakov poter’ pri riskakh peredachi informatsii v vozdushnykh setyakh svyazi [An Algorithm for Assessing Loss-Feature Coefficients under Information-Transfer Risks in Airborne Communication Networks]. Trudy MAI, no. 141. [in Russian]
  11. Sauta, O. I.; Chembarisova, R. I.; Ryzhov, K. Yu.; Nenashev, S. A.; Nenashev, V. A.; Lagoshina, K. V.; Grigorov, M. Yu.; Kuzmenko, V. P. (2025). Analiz avtokorrelyatsionnykh kharakteristik modifitsirovannykh posledovatel’nostey na osnove kodov Barkera: svidetel’stvo o registratsii programmy dlya EVM RU 2025618102, 11.04.2025; Zayavka No. 2025616862 ot 01.04.2025 [Analysis of Autocorrelation Characteristics of Modified Sequences Based on Barker Codes: Certificate of Registration of a Computer Program (RU 2025618102)]. [in Russian]
  12. Yang, Y.; He, J.; Zhou, B. (2021). Effective Interference Mitigation Scheme for Multi-LED-Based Mobile Optical Camera Communication. Applied Optics, 60(35), 10928–10934. https://doi.org/10.1364/AO.443681
  13. Teplikova, V. I.; Sentsov, A. A.; Nenashev, V. A.; Polyakov, V. B. (2022). Analiz diagrammy napravlennosti ploskoy mnogoelementnoy aktivnoy fazirovannoy antennoy reshetki [Analysis of the Radiation Pattern of a Planar Multi-Element Active Phased Array Antenna]. Trudy MAI, no. 125. [in Russian]
  14. Palacios Játiva, P.; Román Cañizares, M.; Azurdia-Meza, C. A.; Zabala-Blanco, D.; Dehghan Firoozabadi, A.; Seguel, F.; Montejo-Sánchez, S.; Soto, I. (2020). Interference Mitigation for Visible Light Communications in Underground Mines Using Angle Diversity Receivers. Sensors, 20, 367. https://doi.org/10.3390/s20020367
  15. Cao, Z.; Cheng, M.; Yang, Q.; Tang, M.; Liu, D.; Deng, L. (2021). Experimental Investigation of Environmental Interference Mitigation and Blocked LEDs Using a Memory-Artificial Neural Network in 3D Indoor Visible Light Positioning Systems. Optics Express, 29, 33937–33953.
  16. Bera, K.; Karmakar, N. (2024). Interference Mitigation in VLC Systems Using a Variable Focus Liquid Lens. Photonics, 11, 506. https://doi.org/10.3390/photonics11060506
  17. Fang, J.; Pan, J.; Huang, X.; Lin, J.; Jiang, C. (2023). Integrated Physical-Layer Secure Visible Light Communication and Positioning System Based on Polar Codes. Optics Express, 31, 41756–41772.
  18. Chauhan, I.; Paul, P.; Bhatnagar, M. R.; Nebhen, J. (2021). Performance of Optical Space Shift Keying Under Jamming. Applied Optics, 60(7), 1856–1863. https://doi.org/10.1364/AO.414456.
  19. Chen, J.; Shu, T. (2022). VL-Watchdog: Visible Light Spoofing Detection With Redundant Orthogonal Coding. IEEE Internet of Things Journal, 9(12), 9858–9871. https://doi.org/10.1109/JIOT.2022.3155600.
  20. Chauhan, I.; Bhatnagar, M. R. (2022). Performance of Transmit Aperture Selection to Mitigate Jamming. Applied Sciences, 12, 2228. https://doi.org/10.3390/app12042228


Download

mai.ru — informational site MAI

Copyright © 2000-2026 by MAI

Вход