The methodology of estimating the coefficient of conservation of the effectiveness of navigation systems and aircraft orientation in the conditions of its flight operation


Аuthors

Golyakov A. D.

Mlitary spaсe Aсademy named after A.F. Mozhaisky, St. Petersburg, Russia

e-mail: algoll949@mail.ru

Abstract

The effectiveness of using a flight vehicle navigation and orientation system is determined by its ability to measure the linear and angular motion parameters with accuracy meeting or exceeding specified requirements. Failures of individual components in modern navigation and orientation systems typically lead to partial system failure, consequently reducing overall operational effectiveness. To assess the impact of a partial failure in a flight vehicle navigation and orientation system on its operational effectiveness, the efficiency retention coefficient is in use. This indicator’s distinguishing feature, relative to conventional reliability measures, lies in its capacity to quantify the impact of navigation and orientation system reliability upon overall functional efficiency.
This paper presents the results of applying a scientific and methodological approach to solving the problem of estimating the efficiency retention coefficient of a flight vehicle navigation and orientation system under actual flight conditions. A vector based indicator has been proposed as the performance metric for navigation and orientation systems. The components of this indicator are values inversely proportional to the root mean square deviation of estimation errors for the parameters being determined, which are obtained from statistical processing of measurement results of a specified volume over a given time period.
Implementation of the proposed methodology for determining the efficiency retention coefficient is exemplified by application to an autonomous navigation system onboard a spacecraft operating in a circular orbital trajectory.
The findings presented in this study can be applied for justifying reliability specifications of constituent elements in emerging navigation and orientation systems for advanced flight vehicles.

Keywords:

efficiency conservation factor, reliability of the navigation and orientation system, aircraft, partial failure, operational condition of the motion parameter measuring instrument, flight operation

References

  1. Gecha V.Ya., Barbul R.N., Sidnyaev N.I., Butenko Yu.I. Metodologiya ocenki nadezhnosti kosmicheskih apparatov pri proektnoj i konstruktorskoj prorabotke // Nadezhnost'. – 2019. – № 2. – C. 3–8.
  2. GOST R 27.102-2021 Nadezhnost' v tekhnike. Nadezhnost' ob"ekta. Terminy i opredeleniya. – M.: Rossijskij institut standartizacii. – 2021.
  3. Mishin A.Yu., Frolova O.A., Isaev Yu.K., Klyapiev D.A. Kompleksnaya navigacionnaya sistema letatel'nogo apparata // Trudy Nizhegorodskogo gosudarstvennogo tekhnicheskogo universiteta im. R.E. Alekseeva. – 2010. – № 3 (82). – S. 27 – 33.
  4. Morozov D.B., Chermoshencev S.F. Metodika povysheniya nadezhnosti funkcionirovaniya sistemy upravleniya bespilotnogo letatel'nogo apparata v polete pri vozniknovenii otkaza v bortovoj kontrol'no-proverochnoj apparature // Nadezhnost'. – 2019. – № 1. – S.30 – 35.
  5. Kuznecov A.G. Avtomatizaciya processa posadki malogabaritnogo bespilotnogo letatel'nogo apparata v osobyh situaciyah // Trudy MAI. – 2011. – № 45.
  6. Karimov A.H. Osobennosti proektirovaniya bespilotnyh aviacionnyh sistem novogo pokoleniya // Trudy MAI. – 2011. –  № 47.  
  7. Dzirkal E.V. Zadanie i proverka trebovanij k nadezhnosti slozhnyh izdelij. – M.: Radio i svyaz'. – 1981. – 176 s.
  8. Netes V.A. Koefficient sohraneniya effektivnosti – pokazatel' nadezhnosti slozhnyh sistem // Nadezhnost'. – 2012. – № 4. – S. 14–23.
  9. Netes V.A. Dvuhstoronnie ocenki koefficienta sohraneniya effektivnosti sistem s vyhodnym effektom, zavisyashchim ot chisla ispolnitel'nyh elementov // Avtomatika i telemekhanika. – 2018. – № 11. – S. 99 – 105.
  10. Baranov E.A., Gorodnichev I.E., Knyazev A.V., Skorobogatov M.A. K voprosu ocenki koefficienta sohraneniya effektivnosti na etape proektirovaniya slozhnyh sistem // Izvestiya TulGU. Tekhnicheskie nauki. – 2022. – Vyp. 11. –  S. 86 – 92.
  11. Tetyushev A.V. Povyshenie koefficienta sohraneniya effektivnosti vychislitel'nogo kompleksa pri ispol'zovanii sredstv virtualizacii // Programmnye produkty i sistemy. – 2012. – № 3. – S. 199 – 202.
  12. Bogatyrev V.A., Bogatyrev S.V. Kriterij optimal'nosti mnogourovnevyh otkazoustojchivyh komp'yuternyh sistem // Nauchno-tekhnicheskij vestnik Sankt-Peterburgskogo universiteta informacionnyh tekhnologij, mekhaniki i optiki. – 2009. – № 5 (63). – S. 92 – 97.
  13. Bogatyrev V.A. i dr. Nadezhnost' dublirovannyh vychislitel'nyh kompleksov // Nauchno-tekhnicheskij vestnik Sankt-Peterburgskogo universiteta informacionnyh tekhnologij, mekhaniki i optiki. – 2011. – № 6 (76). – S. 76 – 80.
  14. Morozov L.M., Petuhov G.B., Sidorov V.N. Metodologicheskie osnovy teorii effektivnosti. – L.: VIKI. – 1982. – 236 s.
  15. Nadezhnost' i effektivnost' v tekhnike. Spravochnik. Tom 3. Effektivnost' tekhnicheskih sistem / Red. sovet: V.S. Avduevskij i dr. – M.: Mashinostroenie. – 1988. – 328 s.
  16. Kozlov B.A., Ushakov I.A. Spravochnik po raschetu nadezhnosti apparatury radioelektroniki i avtomatiki. – M.: Sov. radio. – 1965. – 237 s. 
  17. Moskvin B.V., Mihajlov V.P., Pavlov A.N., Sokolov B.V. Kombinirovannye modeli upravleniya strukturnoj dinamikoj informacionnyh sistem // Izvestiya Vuzov. Priborostroenie. – 2006. – T. 49. – № 11. – S. 7–12.
  18. Kolpin M.A., Procenko P.A., Slashchev A.V. Metodika ocenivaniya effektivnosti funkcionirovaniya nazemnogo avtomatizirovannogo kompleksa upravleniya kosmicheskimi apparatami // Trudy MAI. – 2017. – Vyp. № 92.
  19. Malyugin A.V., Pilipenko L.V., Piruhin V.A. Model' ocenivaniya effektivnosti primeneniya izmeritel'nogo kompleksa // Izvestiya TulGU. Tekhnicheskie nauki. – 2018. – Vyp. 7. –  S. 384 – 391.
  20. Bogatyrev V.A., Bogatyrev S.V., Lepesh G.V. Kriterii optimal'nosti ob"edineniya mashin agregatov v sistemy // Tekhniko-tekhnologicheskie problemy servisa. – 2009. – № 2 (8). – S. 30 – 34.
  21. Nedajvoda A.K., Rozhdestvenskij A.V. Ocenka effektivnosti i kachestva raketno-kosmicheskoj tekhniki // Trudy MAI. – 2012. – Vyp. № 56. 
  22. Brandin V.N., Razorenov G.N. Opredelenie traektorij kosmicheskih apparatov. – M.: Mashinostroenie. –1978. – 216 s.
  23. Anshakov G.P., Golyakov A., Petrishchev V.F., Fursov V.A. Avtonomnaya navigaciya kosmicheskih apparatov. – Samara: Gosudarstvennyj nauchno-proizvodstvennyj raketno-kosmicheskij centr «Progress». – 2011. – 486 s.
  24. Porfir'ev L. F., Smirnov V. V., Kuznecov V. I. Analiticheskie ocenki tochnosti avtonomnyh metodov opredeleniya orbit. M.: Mashinostroenie. – 1987. – 279 s.



Download

mai.ru — informational site MAI

Copyright © 2000-2026 by MAI

Вход