Research on the algorithm for estimating parameters of the linear error model of micromechanical strapdown inertial navigation system
Аuthors
*,Bauman Moscow State Technical University, Moscow, Russian Federation
*e-mail: amas@bmstu.ru
Abstract
The algorithm for estimating the parameters of a linear error model for a low-accuracy micromechanical strapdown inertial navigation system is considered. The estimated error model parameters are accelerometer biases and gyroscope drifts. The estimation algorithm is based on Kalman filtering. The paper considers a variant of the estimation algorithm that utilizes two Kalman filters: the first is used for smoothing measurements obtained from accelerometers and gyroscopes, and the second one for estimating the SINS error model parameters. The research of the algorithm involves analyzing the behavior of estimating the strapdown inertial navigation system error model parameters for various algorithm configurations. An algorithm with a full and reduced state vector for one of the Kalman filters is considered, and the behavior of the estimation is investigated for various ratios of the covariance matrices of the input and measurement noises of both Kalman filters, including the case of a non-stationary strapdown inertial navigation system rotation. The results obtained during the simulation demonstrate the fundamental applicability of the considered algorithm and illustrate the behavior of the estimation process under various conditions.
Keywords:
error model, SINS, MEMS, Kalman filter, navigation algorithmReferences
- Matveev V.V. Engineering error analysis of a strapdown inertial navigation system // Proceedings of Tula State University. Technical sciences. 2014, pp. 251–267.
- Aleshkin V.V., Golovanov P.N. Evaluation of the effect of sensor errors on the accuracy of an integrated orientation and navigation system based on coarse inertial sensors // Bulletin of the Saratov State Technical University. 2010, pp. 58¬–64.
- Danilenko N.V., Maslennikov A.L., Dolgova Yu.S. Selective mechanism for solving the orientation problem with implementation on Raspberry Pi on-board computers. Aerospace Instrument-Making. 2025, no. 1, pp. 32–43. DOI: 10.25791/aviakosmos.1.2025.1455.
- Bykovsky A.V. Calibration of a strapdown inertial navigation systems in the «navigation» mode // Aerospace instrumentation, 2014, № 1, pp. 18–25.
- Evdokimova A.P., Maslennikov A.L. Scaling factors and zero offsets of the MEMS angular velocity sensor estimation using a linear double Kalman filter // Bulletin of the National Research nuclear university «MIFI», 2023, vol. 12, № 1, pp. 9–19. DOI: 10.26583/vestnik.2023.20.
- Evdokimova A.P., Maslennikov A.L. Determination of the parameters of a tree-axis MEMS sensor measurement model by a linear double Kalman filter with a decentralization mechanism // XLVII Academic readings on cosmonautics dedicated to the memory of academician S.P. Korolev and other outstanding Russian scientists – pioneers of space exploration «Korolev readings»: collection of abstracts, Moscow, January 24-27, 2023, Bauman MSTU Press, vol. 3, pp. 254-255.
- Nikolaev S.G., Ivshina Yu.S. Calibration of strapdown inertial navigation systems based on the output signals of the error model // Informatics, Telecommunications and Control. 2014. №4 (200)
- Vavilova N.B., Vasineva I.A., Parusnikov N.A. On bench calibration of aviation strapdown inertial navigation systems // Proceedings of the Moscow Aviation Institute. 2015. №84
- Krylov A.A. Reducing zero offset of MEMS sensors under thermal hysteresis conditions. // Vestnik Koncerna VKO «Almaz-Antey». 2021. №2. P. 48-56.
- Duchi M., Ida E. total Least Squares In-Field Identification for MEMS-Based Inertial Measurement Units. Robotics 2024, 13, 156.
- Tedaldi D., Pretto A., Menegatti E. A Robust and easy to implement method for IMU calibration without external equipments // IEEE International conference on robotics and automation, 2014, DOI: 10.1109/ICRA.2014.6907297
- Fong W.T., Ong S.K., Nee A.Y.C. Methods for in-field user calibration of an inertial measurement unit without external equipment // Measurement science and technology, 2008. DOI:10.1088/0957-0233/19/8/085202
- Syed Z.F., Aggarwal P., Goodall C., Niu X., EI-Sheimy N. A new multi-position calibration method for MEMS inertial navigation systems // Measurement science and technology, 2007. DOI:10.1088/0957-0233/18/7/016
- Shin E.H., EI-Sheimy N. A new calibration method for strapdown inertial navigation systems // Fachbeitrage, 1, 2002.
- Hu Ts., Neusypin K.A., Proletarsky A.V., Selezneva M.S. Modeling algorithms for estimating errors of inertial navigation systems based on laboratory experiment data // Automation. Modern technologies. 2019. Vol.73, № 11, pp. 524-528.
- Klychnikov V.V., Selezneva M.S., Neusypin K.A., Proletarsky A.V., Shen K., Lu V., Sueting Ch. Algorithms for information processing of inertial navigation systems // Automation. Modern technologies. 2018. Vol. 72, № 12, pp. 555-563.
- Shakhtarin B.I., Neusypin K.A., Selezneva M.S., Lifey Ch. Algorithm for estimating the navigation complex of an aircraft carrier-based aircraft //Automation. Modern technologies. 2020. Vol. 74. № 4. pp. 176—180. DOI: 10.36652/0869 4931-2020-74-4-176-180
- Salychev O.S. MEMS-based Inertial Navigation: Expectations and Reality. Moscow: Bauman MSTU Press, 2012. – 208 p.
- Salychev O.S. Inertial Systems in Navigation and Geophysics. — Moscow: Bauman MSTU Press, 1998. — 352 p.
- Selezneva M.S., Shen Kai, Neusypin K.A., Proletarsky A.V. Algorithms for information processing of navigation systems and aircraft complexes – Moscow: Bauman MSTU Press, 2018. – 234 p.
- Danilenko N.V., Maslennikov A.L., Dolgova Yu.S. Features of the implementation of strapdown inertial navigation system orientation algorithms on Raspberry Pi on-board computers // XLIX Academic Readings on Cosmonautics dedicated to the memory of Academician S.P. Korolev and other outstanding domestic scientists — pioneers of space exploration "Korolev Readings": Collection of abstracts, 2025, vol. 2, pp. 165–166. Moscow: BMSTU Press.
Download

