Algorithm for monolayer boundaries identification in composite material from computer tomography images


Аuthors

Panteleev A. *, Turbin N. V.**, Tuchkov N. A., Talia R. L., Akhmedov I. A.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: avpanteleev@inbox.ru
**e-mail: turbinnv@mai.ru

Abstract

<p style="text-align: justify;">
    The paper proposes an algorithm and software for the automatic detection of monolayer boundaries in layered composite materials based on a sequence of tomographic images. The relevance of the problem stems from the need to analyze the microstructure of composites to assess their mechanical properties and durability, as well as the complexity of identifying monolayer boundaries using traditional non-destructive testing methods. The developed algorithm consists of six main stages: extraction of inclusion data using filters and morphological operations, identification of reliable boundary segments with the Sobel filter, addition of crack data and processing of the obtained data for each image individually, data averaging for the entire package, construction of monolayer boundaries using geometric and empirical methods and final border refinement through an additional cycle of border construction on the aggregated monolayer data. The software accepts a sequence of tomographic images of the composite microstructure as input and outputs a set of vectors describing the coordinates of monolayer boundaries. The results are presented as visualized boundaries on output images. The proposed approach enables automation of the analysis of the internal structure of composite materials and usage of the extraccted data in computational models.
</p>

Keywords:

composite material, matrix cracking, computer tomography, filtration, binarization, morphological transformations

References

  1. Hsien J. Computed tomography: principles, design, artifacts and recent advances.- SPIE Press, 2009. 387 p.
  2. Banhart J. Advanced tomographic methods in materials research and engineering.- Oxford University Press, 2008. 462 p.
  3. Maire E., Withers P. Quantitative X-ray tomography. International Materials Reviews, 2014.  Vol. 59. No. 1.  P. 1-43.
  4. Georgantzinos S.K. Characterization and Modelling of Composites, 1st ed.; MDPI: Basel, Switzerland, 2022.
  5. Brandon D., Kaplan W.D. Microstructural characterization of materials.- John Wiley ans Sons Ltd, 2013. 560 p.
  6. Naresh K., Khan K.A. ,  Umer R., Cantwell W.J.  The use of X-ray computed tomography for design and process modeling of aerospace composites: a review. Materials & Design, 2020. Vol. 190. No. 2. p.108553.  https://doi.org/10.1016/j.matdes.2020.108553
  7. Yu B. et al. A comparison of different approaches for imaging cracks in composites by X-ray microtomography. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2016. Vol. 374. No. 2071. p. 20160037.
  8. Heinzl C.,  Amirkhanov A., Kastner J.  Processing, analysis and visualization of CT data. Industrial X-Ray Computed Tomography. 2018.  P. 99–142.
  9. Chen C-T., Gu G. Machine learning for composite materials. MRS Communications. 2019. V. 9. No. 2. P. 1–11.  DOI:10.1557/mrc.2019.32
  10. Shapiro L., Stokman Dzh. Komp'yuternoe zrenie: Per. s angl. [Computer vision]. M.: BINOM. Laboratoriya znanij, 2015.  763 p. (In Russ.).
  11. Gonsales R., Vuds R. Cifrovaya obrabotka izobrazhenij: Per. s angl. [Digital image processing]. M.:  Tekhnosfera, 2024. 1104 p. (In Russ.).
  12. Suzuki S., K. Abe. Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing. 1985. V.30. No.1. P. 32–46.
  13. Krupenin A. M. New method for construction kinetic diagram by fatigue crack growth rate tests. Trudy MAI, 2024. No 136. http://mai.ru//upload/iblock/7b3/opvl5vr4421hcpqa9g5s7yj5pgurbsyr/04_Krupenin.pdf
  14. Khomyakov O.O., Panishchev V.S., Titov V.S., Vatutin E.I. Mathematical model and a parallel algorithm for processing images containing symbolic information about products. Trudy MAI, 2024, no. 137. URL: https://trudymai.ru/eng/published.php?ID=181884
  15. Trusfus M.V., Abdullin I.N.  Marker images detection algorithm for the unmanned aerial vehicle vertical landing. Trudy MAI. 2021. No. 116. http://trudymai.ru/ УДК 004.932 DOI: 10.34759/trd-2021-116-13 
  16. Panteleev A.V, Turbin N.V., Tuchkov N.A., Talya R.L., Akhmedov I.A. Method for tomographic images processing for matrix cracking quantification in composite material // Trudy MAI. 2025. No.143. (In Russ.). URL: https://trudymai.ru/eng/published. php?ID=185657
  17. NumPy documentation URL: https://numpy.org/doc/ (дата обращения: 19.07.2025)
  18. OpenCV: OpenCV modules URL: https://docs.opencv.org/4.x/ (дата обращения: 20.07.2025)
  19. Shapely // Shapely 2.1.1 documentation URL: https://shapely.readthedocs.io/en/stable/ (дата обращения: 24.07.2025).
  20. SciPy // SciPy documentation URL: https://docs.scipy.org/doc/scipy/ (дата обращения: 29.07.2025).
  21. Szeliski R. Computer Vision: Algorithms and Applications, 2nd ed. 2022, Springer: New York. 925 p. https://doi.org/10.1007/978-3-030-34372-9



Download

mai.ru — informational site MAI

Copyright © 2000-2025 by MAI

Вход