Modeling of a bistatic airborne radar for assessing the quality of radar images generated in the forward-looking zone


Аuthors

, Sergiev S. A.

Innopolis University, Innopolis, Russia

Abstract

The study presents a mathematical model for assessing the quality parameters of a radar image formed in the forward-looking zone of a bistatic airborne radar. The model is designed for radars operating in the wavelength range from 2 to 4 cm. The model uses radar parameters, radar operating mode parameters, carrier trajectory parameters, and terrain conditions parameters as input variables. The study showed that with a baseline length between radar carriers and a flight altitude of 1000 m, course angles of the main lobe of the transmitting antenna from 0° to -60° and course angles of the main lobe of the receiving antenna from 15° to 60°, the length of the radar image varies from 180 to 1300 m, and the width - from 70 to 250 m. With a ratio of the baseline length between radar carriers to flight altitude from 0.5 to 2.0, a flight altitude of 1000 m, course angles of the main lobe of the transmitting antenna from 0° to -45° and course angles of the main lobe of the receiving antenna from 15° to 60°, the resolution of the radar image lies in the range from 0.12 to 0.45 m in horizontal range and from 0.06 to 0.15 m in azimuth. The signal-to-noise ratio of the radar image background varies by approximately 20 dB depending on the type of underlying surface. For practical application of the model, we have developed a tool in the form of an online calculator.

Keywords:

airborne radar, bistatic radar, forward-looking, radar image resolution, radar image signal-to-noise ratio

References

  1. Krieger G. Advanced Bistatic and Multistatic SAR Concepts and Applications // European Conference on Synthetic Aperture Radar (EUSAR). – Dresden, Germany, 2006. – P. 1–101.
  2. Daun M., Koch W. and Klemm R. Tracking of ground targets with bistatic airborne radar // IEEE Radar Conference. – Rome, Italy, 2008. – P. 1–6.
  3. Grathwohl A., Meinecke B., Widmann M., Kanz J. and Waldschmidt C. UAV-Based Bistatic SAR-Imaging Using a Stationary Repeater // IEEE Journal of Microwaves. – 2023. – Vol. 3, No. 2. – P. 625–634.
  4. Hu N., Li Y., Pan W., Shao S., Tang Y. and Li X. Geometric Distribution of UAV Detection Performance by Bistatic Radar // IEEE Transactions on Aerospace and Electronic Systems. – 2024. – Vol. 60, No. 2. – P. 2445-2452.
  5. Zhu J., Lin B., Pan J. et al. Unmanned Airborne Bistatic Interferometric Synthetic Aperture Radar Data Processing Method Using Bi-Directional Synchronization Chain Signals // Remote Sens. – 2024. – 16(5), 769. Avialable at:  https://doi.org/10.3390/rs16050769. (accessed 16.05.2025)
  6. Lifanov A.S. Opredelenie dvizhushchihsya ob"ektov na odnoantennoj radiolokacionnoj sisteme s sintezirovannoj aperturoj // Trudy MAI. – 2003. – Vypusk № 11. (In Russ.) Avialable at:  URL: https://trudymai.ru/published.php?ID=34485. (accessed 16.05.2025).
  7. Shepeta A.P., Nenashev V.A. Accuracy characteristics of object location in a two-position system of small onboard radars // Information and Control Systems. – 2020. – No. 2. – P. 31–36.
  8. Xu F., Zhang Y., Wang R. et al. Heuristic Path Planning Method for Multistatic UAV-Borne SAR Imaging System // IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. – 2021. – Vol. 14. – P. 8522–8536.
  9. Neronskij L.B., Mihajlov V.F., Bragin I.V. Mikrovolnovaya apparatura distancionnogo zondirovaniya poverhnosti Zemli i atmosfery. Radiolokatory s sintezirovannoj aperturoj antenny. – SPb.: SPbGUAP, 1999. (in Russian).
  10. Rodriguez-Cassola M., Baumgartner SV, Krieger G. et al. Bistatic spaceborne-airborne experiment TerraSAR-X/F-SAR: data processing and results // IEEE International Geoscience and Remote Sensing Symposium – Boston, MA, USA, 2008. – P. III451–III454.
  11. Rodriguez-Cassola M., Prats-Iraola P., Krieger G., Reigber A. and Moreira A. Bistatic SAR image formation: A systematic approach // IEEE Geoscience and Remote Sensing Symposium. –  Quebec City, QC, Canada, 2014. – P. 3945–3948.
  12. Favenza A., Imam R., Dovis F. and Pini M. Detecting water using UAV-based GNSS-Reflectometry data and Artificial Intelligence // 2019 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor). – Portici, Italy, 2019. – P. 7–12
  13. Kalinnikov V.V., Ustinov A.V., Kosarev N.S. Opyt ispol'zovaniya metoda GNSS-reflektometrii dlya izmereniya vysoty snezhnogo pokrova // Vestnik SGUGiT. — 2023. — Vol. 28, No 1. – P. 6–13 (in Russian).
  14. Verba V. S. Problemy i obshchesistemnye voprosy razrabotki bortovyh RLS novogo pokoleniya. // Zhurnal radi-oelektroniki. — 2016. — No. 1. — P. 1–29 (in Russian).
  15. Kondratenkov G.S., Frolov A.Yu. Radiovidenie. Radiolokacionnye sistemy distancionnogo zondirovaniya Zemli. – M.: Radiotekhnika, 2005. (in Russian).
  16. Zanin K. A. Razrabotka modeli ocenki prostranstvennogo razresheniya kosmicheskogo radiolokatora sinteziro-vannoj apertury // Trudy MAI. — 2017. — Is. 96. (In Russ.) Avialable at: http://trudymai.ru/published.php?ID=85931. (accessed 16.05.2025)
  17. Hazov A.S., Ortikov M.Yu., Gusev S.N. Metodika ocenivaniya razreshayushchej sposobnosti kosmicheskogo radiolokatora s sintezirovannoj aperturoj antenny s uchetom kompensacii atmosfernyh iskazhenij // Trudy MAI. – 2022. – Vypusk № 126. (In Russ.) Avialable at: URL: https://trudymai.ru/published.php?ID=169001. (accessed 16.05.2025).
  18. Nenashev V.A. Osobennosti klassifikacii podstilayushchih poverhnostej zemli po harakteri-stikam ekho-signalov v bortovyh RLS // Trudy MAI. – 2021. – Vypusk № 118. (In Russ.) Avialable at:  https://trudymai.ru/published.php?ID=158246. (accessed 16.05.2025)
  19. Marquez-Martinez J. and Alvarez-Perez J. A First Study on the use of TerraSAR-X for Meteorological Purposes // 2006 IEEE International Symposium on Geoscience and Remote Sensing. – Denver, CO, USA, 2006. – P. 1930–1933.
  20. Alozie E, Abdulkarim A, Abdullahi I, Usman AD, Faruk N, Olayinka I-FY, Adewole KS, Oloyede AA, Chiroma H, Sowande OA, et al. A Review on Rain Signal Attenuation Modeling, Analysis and Validation Techniques: Advances, Challenges and Future Direction // Sustainability. – 2022. –  No 14(18):11744. Avialable at:  https://www.mdpi.com/2071-1050/14/18/11744. (accessed 16.05.2025)
  21. ITU-R P.840-7. Attenuation due to clouds and fog, 2017.
  22. Egorov D. P., Ilyushin Ya. A., Kutuza B. G. and Koptsov Ya. V. Cloud Liquid Content Retrieval Errors Related to the Flat-layered Cloudfield Model Usage // Photonics & Electromagnetics Research Symposium (PIERS). – Hangzhou, China, 2021. – P. 1978–1984.
  23. ITU-R P.838-3. Specific attenuation model for rain for use in prediction methods, 2005.


Download

mai.ru — informational site MAI

Copyright © 2000-2025 by MAI

Вход