Parametric optimization methods in a transonic transport aircraft characteristic wings airfoils designing problem


Аuthors

Panteleev A. *, Gunchin V. K.**, Nadorov I. S., Akhmedov I. A., Silaev N. A.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: avpanteleev@inbox.ru
**e-mail: gunchinvk@mai.ru

Abstract

An approach to designing aircraft wing airfoils based on the use of metaheuristic global optimization algorithms is proposed. At the first stage of the project, the wing planform is determined, which is characterized, first of all, by such parameters as the quarter-chord sweep angle, taper ratio, aspect ratio, and the shape of the rear and front extensions (if any). In addition, the average relative thickness of the wing is specified to ensure the required strength characteristics of the structure, as well as the required internal volumes. Thus, when choosing the wing planform and wing average relative thickness, the team of designers and engineers must find optimal solutions that satisfy the conflicting requirements for achieving high values of aerodynamic and weight characteristics along with taking into account the specified design limitations. Next, the design of airfoils is carried out, which are then used to create a wing shape. The wing is formed by four sections from airfoils with specified thickness-to-chord ra-tio. Bernstein polynomials are used to parameterize the airfoil geometry, and a soft-ware system implementing the solution of the Navier-Stokes equations is used to cal-culate its aerodynamic characteristics. A design scheme based on consistent mathe-matical modeling of the flow process and parametric optimization is developed. The optimization methods used were a modification of the moth-flame optimization algo-rithm and Luus–Jaakola method with successive reduction of the feasible solutions set. It is demonstrated that as a result of applying the proposed approach, the initial airfoils specified by the designer can be changed in order to obtain the required values of the aerodynamic characteristics. Numerical results confirming the effectiveness of the approach are presented.

Keywords:

wing airfoil design, airfoil parameterization, wing polar, metaheuristic optimization algorithms, mathematical modeling, optimization methods

References

  1. Bolsunovskii A.L., Buzoverya N.P., Karas' O.V., Kovalev V.E. Development of methods of aerodynamic design of cruise con-figuration of subsonic aircraft. Trudy TSAGI. 2002. No. 2655. P. 133-145. (In Russ.)
  2. Bolsunovskii A.L., Buzoverya N.P., Skomorokhov C.I., Cher-nyshev I.L. Computational and experimental studies of high-speed wings for advanced long-haul aircraft. Trudy MAI. 2018. No. 101. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=96601
  3. Peigin S.V., Pushchin N.A., Bolsunovskii A.L., Timchenko S.V. An optimal aerodynamic design for the wing of a wide-body long-range aircraft. Vestnik Tomskogo gosudarstvennogo univer-siteta. Matematika i mekhanika. 2018. No. 51. P. 117–129. DOI: 10.17223/19988621/51/10
  4. Kulfan B.M. Aerodynamic of sonic flight. Research & Enabling Technology Boeing Commercial Airplanes. 2006. Available at: http://brendakulfan.com/docs/tas3.pdf 
  5. Kulfan B.M., Bussoletti J.E. "Fundamental" parametric geome-try representations for aircraft component shapes. 11th AI-AA/ISSMO Multidisciplinary Analysis and Optimization Confer-ence: The Modeling and Simulation Frontier for Multidisciplinary Design Optimization. 6 - 8 September 2006. Portsmouth, Virgin-ia. AIAA--2006-6948
  6. Kulfan B.M., Bussoletti J.E., Hilmes C.L. Pressures and drag characteristics of bodies of revolution at near sonic speeds in-cluding the effects of viscosity and wind tunnel walls. 45th AIAA Aerospace Sciences Meeting and Exhibit. 8 - 11 Jan 2007. Reno, Nevada. 2007. AIAA--2007-0684. DOI: 10.2514/6.2007-684
  7. Kulfan B.M. Universal parametric geometry representation method. Journal of Aircraft. January 2008. DOI: 10.2514/1.29958
  8. Kulfan B.M. Recent extensions and applications of the “CST” universal parametric geometry representation method. Aeronau-tical Journal -New Series, AIAA-2007-7709, Sept. 2007, No. 114. P. 1153. DOI: 10.2514/6.2007-7709
  9. Kulfan B.M. Modification of CST airfoil representation method-ology. 2020. URL: https://www.researchgate.net/publication/343615711
  10. Lane K.L., Marshall D.D. A Surface parameterization method for airfoil optimization and high lift 2D geometries utilizing the CST methodology. 47th AIAA Aerospace Sciences Meeting In-cluding The New Horizons Forum and Aerospace Exposition. 5 - 8 January 2009, Orlando, Florida 2009. AIAA 2009-1461.
  11. Zhu F. Geometric parameterisation and aerodynamic shape opti-misation. PhD thesis, University of Sheffield. 2014.
  12. Zhu F., Qin N. Intuitive class/shape function parameterization for airfoils. AIAA Journal. 2014. V. 52, No. 1. P. 17–25. DOI: 10.2514/1.J052610
  13. Khurana M.S., Winarto H., Sinha A.K. Airfoil geometry param-eterization through shape optimizer and computational fluid dy-namics. 46th AIAA Aerospace Sciences Meeting and Exhibit, 2008. DOI: 10.2514/6.2008-295
  14. Sobieczky H. Parametric airfoils and wings. Notes on Numerical Fluid Mechanics. 1998. V. 68, P. 71–87.
  15. Akram M.T., Kim M.-H. Aerodynamic shape optimization of NREL S809 airfoil for wind turbine blades using Reynolds-Averaged Navier Stokes Model — Part II. Applied Sciences. 2021. V. 11, P. 2211. DOI: 10.3390/app11052211
  16. Gardner B.A., Selig M.S. Airfoil design using a genetic algorithm and an inverse method. 41st Aerospace Sciences Meeting and Ex-hibit. AIAA 2003–0043. 6–9 January 2003. Reno, Nevada. DOI: 10.2514/6.2003-43
  17. Sederberg T.W., Parry S.R. Free-form deformation of solid geo-metric models. 13th Annual Conference on Computer Graphics and Interactive Techniques, Dallas, Texas. 1986. No. 4. P. 151–160. DOI: 10.1145/15886.15903
  18. Koo D., Zingg D.W. Progress in aerodynamic shape optimiza-tion based on the Reynolds-averaged Navier-Stokes equations. 54th AIAA Aerospace Sciences Meeting. AIAA-2016-1292. San Diego, California, January 2016. DOI: 10.2514/6.2016-1292
  19. Lee C., Koo D., Zingg D.W. Comparison of B-spline surface and free-form deformation geometry control for aerodynamic optimi-zation. AIAA Journal. 2017. V. 55, P. 228–240. DOI: 10.2514/1.J055102
  20. Poole D.J., Allen C.B., Rendall T.C.S. Optimal domain element shapes for free-form aerodynamic shape control. Session: Aero-dynamic Design: Analysis, Methodologies & Optimization Tech-niques II. AIAA 2015-0762. Published Online: 3 Jan 2015. DOI: 10.2514/6.2015-0762
  21. 21.Toal D.J.J., Bresslo N.W., Keane A.J. Geometric filtration us-ing proper orthogonal decomposition for aerodynamic design optimization. AIAA Journal. 2010. V. 48, No. 5. P. 916–928. DOI: 10.2514/1.41420
  22. Masters D.A., Taylor N.J., Rendall T.C.S., Allen C.B., Poole D.J. Review of aerofoil parameterisation methods for aerody-namic shape optimization. 53rd AIAA Aerospace Sciences Meet-ing, Jan 2015. DOI: 10.2514/6.2015-0761
  23. Masters D.A., Taylor N.J., Rendall T.C.S., Allen C.B., Poole D.J. A Geometric comparison of aerofoil shape parameterisation methods. 54th AIAA Aerospace Sciences Meeting. No. AIAA 2016-0558. 4-8 January 2016, San Diego, California, USA. DOI: 10.2514/6.2016-0558
  24. Nikolsky A.A. Universal geometric transformation method PGT for aircraft design. 44th European rotorcraft forum. 2018. V. 1, No. 40. P. 456-467.
  25. Nikol'skii A.A. Helicopter airfoil design using the PGT tech-nique. Trudy MAI. 2024. No. 134. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=178466
  26. Nikol'skii A.A. Numerical solution of the inverse airfoil problem using the PGT technique. Trudy MAI. 2023. No. 133. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=177660
  27. Meheut M., Dumont A., Carrier G., Peter J. E. Gradient-based optimization of CRM wing-alone and wingbody-tail configura-tions by RANS adjoint technique. 54th AIAA Aerospace Sciences Meeting. AIAA-2016-1293. San Diego. California. January 2016. DOI: 10.2514/6.2016-1293
  28. Peigin S., Epstein B. Robust handling of non-linear constraints for GA optimization of aerodynamic shapes. International Jour-nal for Numerical Methods in Fluids. 2004. V. 45 (12), P. 1339–1362. DOI: 10.1002/fld.747
  29. Epstein B., Peigin S. Constrained aerodynamic optimization of three-dimensional wings driven by Navier-Stokes computations. AIAA Journal. 2005. V. 43 (9), P. 1946–1957. DOI: 10.2514/1.10308
  30. Parkhaev E.S., Semenchikov N.V. Some Aspects of Airfoil Op-timization Process for Small Size Unmanned Aerial Vehicles Application. Trudy MAI. 2015. No. 80. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=56884
  31. Gantmakher F.R. Teoriya matrits (Matrix Theory). Moscow: Fizmatgiz Publ., 2010. 559 p.
  32. Panteleev A.V., Skavinskaya D.V. Metaevristicheskie strategii i algoritmy global'noi optimizatsii (Metaheuristic strategies and al-gorithms of global optimization). Moscow: Faktorial Publ., 2023. 564 p.
  33. Mirjalili S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-Based Systems. 2015. V. 89, P. 228–249. DOI: 10.1016/j.knosys.2015.07.006
  34. Panteleev A.V., Nadorov I.S. Application of the Modified Meth-od Simulating the Behavior of a Flock of Moths to Solve the Op-timal Open Loop Control Problem of a Mobile Robot Move-ment. Modelirovanie i analiz dannykh. 2025. V. 15, No 1. P. 81–109. (In Russ.). DOI: https://doi.org/10.17759/mda.2025150105
  35. Luus R. Iterative Dynamic Programming. London, Chapman & Hall/CRC,2000.331 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2025 by MAI

Вход