Numerical study of the flow around the ducted rotor propulsion with controlled leading part of the ring fairing

Аuthors
*, **Kazan National Research Technical University named after A.N. Tupolev, Kazan, Russia
*e-mail: batrakov_a.c@mail.ru
**e-mail: lyaysan_garipova@mail.ru
Abstract
In this paper, numerical simulation of the flow around a ducted rotor propulsor is performed. The cylindrical duct allows to significantly increase the efficiency of the rotor in the hover mode. With increasing axial flight speed, the efficiency of the cylindrical duct decreases. At high axial flight speed, the cylindrical duct creates additional drag. The VK1-K184V ducted rotor propulsor, for which experimental data are available, is considered as the base object of simulation. Numerical simulation is carried out in the ANSYS FLUENT software package based on the solution of the Reynolds-averaged Navier-Stokes equations in a steady-state statement. The steady-state statement is applicable to the problem under consideration due to the presence of a periodic flow pattern. The Spalart-Allmaras turbulence model is used to close the system of equations. The results of numerical simulation showed good agreement with the experimental data. In this paper, a modification of the ducted rotor propulsor in the form of mechanization of the duct is considered. By mechanization we mean ensuring the possibility of controlling the position of the front part of the cylindrical duct, by analogy with the slat on the wing of an aircraft. The following control options were studied: slat extension to increase the chord of the cylindrical duct with the formation of an aerodynamic gap; slat extension to increase the chord of cylindrical duct with the overlap of the aerodynamic gap using a sliding surface; slat deflection leading to a change in the opening coefficient of the cylindrical duct (the ratio of the duct diameter along the leading edge of the crossection to the inner diameter of the duct). It is shown that a promising direction is the use of mechanization that allows regulating the opening coefficient of the duct. In the hover mode, a high opening coefficient of the duct provides additional thrust due to an increase in the area of vacuum in the front part of the fairing, and at a high axial flight speed, a decrease in the opening coefficient of the duct allows to reduce the area of flow stagnation, thereby reducing aerodynamic drag. The obtained data indicate that by using rational control of the cylindrical duct mechanization it is possible to increase the thrust of the propeller by 3% and reduce the required torque by 5%.
Keywords:
computational aerodynamics, ducted rotor propulsor, aerodynamic characteristicsReferences
- Ismagilov F.R., Vavilov V.E., Mustaev E.I., Urazbakhtin R.R., Kil'metov R.A. Evaluation of the determination of the aerodynamic characteristics of the propeller for an unmanned aerial vehicle through numerical modeling and 3D scanning. Trudy MAI. 2024. No. 138. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=182662
- Vavilov V.E., Ismagilov F.R., Mustaev E.I., Urazbakhtin R.R. Numerical study of the engine-propeller combination of the unmanned aerial vehicle with the propeller integrated into the engine. Trudy MAI. 2023. No. 131. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=175917. DOI: 10.34759/trd-2023-131-11
- Samokhin V.F., Ostroukhov S.P., Moshkov P.A. Experimental Research of Pilotless Vehicle Noise Sources with a Pusher Ducted Propeller. Trudy MAI. 2013. No. 70. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=44459
- Shevchenko A.V., Muravitskaya L.A. Computational and experimental studies of aerodynamic characteristics of unmanned aerial vehicles at subsonic speeds. Trudy MAI. 2024. No. 138. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=182661
- Lemko O.L. Evaluation of the efficiency of longitudinal controls of the unmanned aerial vehicle of the scheme «Flying Wing». Informatsionnye sistemy, mekhanika i upravlenie. 2011. No. 6. P. 108-115. (In Russ.)
- Arkhipov M.E. Designing of the rotor-ring propeller of the multi-rotor micro-unmanned flying machine of the copter type. XXXIV nauchno-tekhnicheskaya konferentsiya po aerodinamike sbornik trudov. Zhukovskii: TSAGI im. N.E. Zhukovskogo Publ., 2024. P. 14-15. (In Russ.)
- Denisenko P.V., Bulat P.V., Chernyshov P.S., Volkov K.N. Aeroacoustic characteristics of the quadrocopter propeller on the vertical take-off and landing mode Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika. 2021. No. 4. P. 66-73. (In Russ.)
- Alesin V.S., Gubskii V.V., Pavlenko O.V. Influence of the fuselage and ring interference on the maximum thrust of the air pusher propeller-ring mover. Aerospace MAI Journal. 2020. V. 27, No. 1. P. 7-18. (In Russ.)
- Grishanov V.V. Investigation of the characteristics of propeller-ring (fan) propulsors of UAV GDP. XXVI nauchno-tekhnicheskaya konferentsiya po aerodinamike: sbornik trudov. Zhukovskii: TSAGI im. N.E. Zhukovskogo Publ., 2015. P. 99-100. (In Russ.)
- Grishanov V.V., Tarasenko M.M. Investigation of the characteristics of the rotor-ring propulsor, aimed at its use for UAV vertical takeoff. XXV nauchno-tekhnicheskaya konferentsiya po aerodinamike: sbornik trudov. Zhukovskii: TSAGI im. N.E. Zhukovskogo Publ., 2014. P. 114. (In Russ.)
- Bulat P.V., Kuznetsov P.N., Chernyshov P.S. Influence of the radial clearance between the ring and the propeller ends on the propeller ring propulsor characteristics. Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika. 2023. No. 4. P. 73-79. (In Russ.)
- Dudnikov S.Yu., Kuznetsov P.N., Mel'nikova A.I. Research of propeller-ring propulsors. Comparison of a birorotative two-row propeller with four-bladed and eight-bladed propellers. Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika. 2023. No. 2. P. 60-66. (In Russ.)
- Bulat M.P., Vokin L.O., Volobuev I.A. Research of the propeller-ring propulsors. Comparison of the propeller-ring propulsors with the usual single-row and X-shaped double-row propellers. Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika. 2023. No. 2. P. 44-48. (In Russ.)
- Bulat P.V., Prodan N.V., Vokin L.O. Comparison of the turbulence models at calculation of a model propeller-ring propulsor. Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika. 2022. No. 4. P. 74-80. (In Russ.)
- Dudnikov S.Yu., Bulat M.P., Vokin L.O., Kuznetsov P.N., Chernyshov P.S. Mathematical and computer modeling of the single-row and double-row six-bladed propellers. Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optiki. 2022. V. 22, No. 6. P. 1226-1236. (In Russ.)
- Denisenko P.V., Chernyshov P.S., Volkov K.N., Vokin L.O. Numerical modeling of the quadrocopter rotor-ring propulsor streamline and determination of its thrust characteristics at different flight modes. Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika. 2021. No. 2. P. 49-56. (In Russ.)
- Rybakov D.V., Chernyshov P.S., Vokin L.O., Prodan N.V. Numerical modeling of the vertical landing of an unmanned aerial vehicle with the rotor-ring propulsors by the vortex-resolving methods. Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika. 2020. No. 4. P. 197-200. (In Russ.)
- Bulat P.V., Chernyshov P.S., Mel'nikova A.I. Results of the development of a methodology for designing a line of propeller-ring propulsors with moderate and high-power load per area for unmanned aerial vehicles for transport purposes. Aerokosmicheskaya tekhnika i tekhnologii. 2024. V. 2, No. 3. P. 125-151. (In Russ.)
- Bulat P.V., Dudnikov S.Yu., Kuznetsov P.N. et al. Proektirovanie vinto-kol'tsevogo dvizhitelya bespilotnogo vozdushnogo sudna. Chast' I. (Design of a propeller-ring propulsor of an unmanned aerial vehicle. Part I.). Moscow: Izd-vo «Sputnik +» Publ., 2022. 104 p. (In Russ.)
- Ostroukhov S.P. Aerodinamika vozdushnykh vintov i vinto-kol'tsevykh dvizhitelei (Aerodynamics of propellers and propeller-ring propulsors). Moscow: FIZMATLIT Publ., 2014. 328 p. (In Russ.)
- Bulat P.V., Kuznetsov P.N., Chernyshov P.S. Influence of the radial clearance between the ring and the tips of the propeller on the characteristics of the propeller-ring propulsor. Izvestiya vuzov. Aviatsionnaya tekhnika. 2023. No. 4. P. 73-79. (In Russ.)
Download