Method for demodulating biorthogonal signals with binary phase manipulation

Аuthors
1, 1, 1, 2, 3*1. Air force academy named after professor N.E. Zhukovskogo and Y. A. Gagarin, 54a Starye Bolshevikov str., Voronezh, 394064, Voronezh Region
2. Moscow State Linguistic University, Moscow, Russia
3. Kikot Moscow University of the Ministry of Internal Affairs of Russia, Moscow, Russia
*e-mail: marina_lion@mail.ru
Abstract
The aim of the work is to find and scientifically substantiate new ways to increase the noise immunity of radio engineering systems and communication complexes. In the course of the study, a new method for demodulating binary phase-manipulated biorthogonal signals is proposed, a block diagram of the device implementing it is presented, and the principle of operation of the device is described. A simulation of the functioning of the developed device was carried out and noise immunity characteristics were obtained. The developed block diagram includes a biorthogonal signal demodulator consisting of an analog-to-digital converter, a shift register, subtractors, quadrature processing channels, an adder, a solver, a storage device and a decoder. The device's operation is based on sequential storage of signal samples, calculation of responses in quadrature channels, their summation and subsequent demodulation based on a comparative analysis of biorthogonal sequences. To evaluate the effectiveness of the method, simulation modeling was performed in MATLAB/Simulink. The obtained dependences of the error probability on the signal-to-noise ratio showed compliance with theoretical calculations, which confirms the adequacy of the proposed approach. The developed method provides high noise immunity of the demodulator and can be implemented in programmable logic integrated circuits with minimal computational costs. In the future, it is planned to compare the proposed method with other types of information encoding.
Keywords:
demodulation, decoding, digital signal processing, analog-to-digital conversion, biorthogonal sequencesReferences
- Voznyuk V.V., Kopalov Yu.N. Investigation of the noise immunity of receiving OFDM signals in conditions of unintended narrowband noise interference. Trudy MAI. 2023. No. 130. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=174611. DOI: 10.34759/trd-2023-130-14
- Krukhmalev V.V., Gordienko V.N. Osnovy postroeniya telekommunikatsionnykh sistem i setei (Fundamentals of building telecommunication systems and networks). Moscow: Goryachaya liniya-Telekom Publ., 2004. 510 p.
- Solov'ev YU.A. Sistemy sputnikovoi navigatsii (Satellite navigation systems). Moscow: Eko-Trendz Publ., 2000. 268 p.
- Plaksienko V.S., Plaksienko N.E. Osnovy priema i obrabotki signalov (Fundamentals of signal reception and processing). Rostov-na-Donu: YuFU Publ., 2016. Ch. 1. 80 p.
- Polyakov V.B., Neretin E.S., Ivanov A.S. et al. Architecture of advanced avionics control systems. Trudy MAI. 2018. No. 100. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=93459
- Prokis Dzh. Tsifrovaya svyaz' (Digital communications). Moscow: Radio i svyaz' Publ., 2000. 800 p.
- Peng Bo., Chen Q. PN Codes Estimation of Binary Phase Shift Keying Signal Based on Sparse Recovery for Radar Jammer. Sensors. 2023. V. 23, No. 1. P. 554. DOI: 10.3390/s23010554
- Alhosban A. Binary Offset Carrier (BOC) and Binary Phase Shift Keying (BPSK) Modulation in Indoor Drones GNSS Recievers using Multipath Error Envelope MEE Technique. International Journal of Membrane Science and Technology. 2023. V. 10, No. 3. P. 460-475. DOI: 10.15379/ijmst.v10i3.1554
- Sklyar B. Tsifrovaya svyaz' (Digital communications). Moscow: Vil'yams Publ., 2003. 1104 p.
- Rybin V.V. Typical difference operators in the spectral domain in biorthogonal bases. Trudy MAI. 2010. No. 37. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=13437
- Golikov A.M. Sistemy tsifrovoi radiosvyazi (Digital radio communication systems). Moscow: Ai Pi Ar Media Publ., 2022. 340 p.
- Vazhenin N.A., Kir'yanov I.A. Evaluation of statistical characteristics of LDPC decoder functioning on a simulation model. Trudy MAI. 2012. No. 59. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=35250
- Vazhenin N.A., Kir'yanov I.A. Features of the software implementation and characteristics of the low-density code decoder in the MATLAB/Simulink environment. Aerospace MAI Journal. 2014. V. 21, No. 2. P. 104-113. (In Russ.)
- Sorokin I.A., Tyundina T.E. Analysis of modern methods and means of increasing the spectral efficiency of communication systems. Vestnik NGIEI. 2015. No. 10 (53). P. 46-64. (In Russ.)
- Soroka N.I., Krivinchenko G.A. Telemekhanika. Sistemy kontrolya i upravleniya (Telemechanics. Control and management systems). Minsk: BGUIR Publ., 2020. Ch. 2. 402 p.
- Bykov V.I. Ustroistva preobrazovaniya i obrabotki informatsii v sistemakh podvizhnoi svyazi (Devices for converting and processing information in mobile communication systems). Vladimir: Izd-vo Vladimirskogo gosudarstvennogo universiteta Publ., 2009. 90 p.
- Borisov V.I. Pomekhozashchishchennost' sistem radiosvyazi: osnovy teorii i printsipy realizatsii (Noise immunity of radio communication systems: fundamentals of theory and principles of implementation). Moscow: Nauka Publ., 2009. 358 p.
- Yarlykov M.S., Bogachev A.S. Aviatsionnye radioelektronnye kompleksy (Aviation radioelectronic complexes). Moscow: VATU Publ., 2000. 615 p.
- Botov M.I., Vyakhirev V.A., Devotchak V.V. Vvedenie v teoriyu radiolokatsionnykh sistem: monografiya (Radar systems introduction to the theory: a monograph). Krasnoyarsk: Sibirskii federal'nyi universitet Publ., 2012. 394 p.
- Geister S.R., Kozlov S.V. Sistemnoe proektirovanie radiolokatsionnykh stantsii (System design of radar stations). Minsk: BGUIR Publ., 2025. 306 p.
Download