Comparison of LOGOS and ABAQUS: solutions for post-buckling deformation of a cylindrical shell under axial compression


Аuthors

Obolenskiy M. V.1*, Voronkov O. V.1**, Andropenkov S. S.1***, Kurikov N. N.2****

1. Systems of Engineering Analysis Ltd., Nizhny Novgorod, Russia
2. Atomenergoproekt JSC, Saint-Petersburg, Russia

*e-mail: m.obolenskiy@caecis.com
**e-mail: fsi@caecis.com
***e-mail: s.andropenkov@caecis.com
****e-mail: nnkurikov@spbaep.ru

Abstract

Cross-validation results for LOGOS Russian-made commercial CAE software are provided in the article. Dynamic buckling and post-buckling elastic-plastic deformation of straight thinwalled aluminum round pipe under axial compression is considered for the purpose. Set-up for the case is based on descriptions of an experiment from literature. LOGOS simulation results are compared to the corresponding ABAQUS results and to the experimental results.
An assembly consisting of top and bottom steel mandrels and the pipe between them is considered. The top mandrel is welded to a steel rod, which is placed inside the mandrels and the pipe and serves for centering of the assembly and as a sliding guide. The bottom mandrel is fixed on a massive basement. The mandrels and the rod are considered as massive rigid bodies relative to the pipe. Impactor falling from a certain height along axis of the pipe on the top mandrel is loading the assembly. Behavior of the assembly during the event is simulated using finite element method (FEM) and explicit time integration scheme. Initial small imperfection of the pipe shape producing a significant influence on the final pipe deformed shape is considered in the simulation as an additional aspect.
Good qualitative correspondence of the obtained simulation results to the experimental results is stated. Quantitative comparison is not done because of strong probabilistic nature of the pipe behavior based on real size and shape of its initial small imperfections. LOGOS and ABAQUS simulation results for the majority of the considered values differ less than 1%, maximum 4%. LOGOS calculation effort is nearly 27 times larger compared to ABAQUS. The provided information confirms that LOGOS software can be successfully used for solution of engineering problems analog to the considered case. LOGOS being under intensive development has a significant potential in a field of calculation efficiency. The case can be used for testing of the software new versions.

Keywords:

FEM, impact loading, contact, post-buckling elastic-plastic deformation, ABAQUS, LOGOS

References

  1. Yakovlev P.A., Buslaev A.A. Forum po matematicheskomu modelirovaniyu opredelil kurs razvitiya rossiiskoi otkrytoi CAE-platformy «LOGOS» URL: https://www.atomic-energy.ru/news/2023/12/07/141292
  2. Bazhenov V.G., Ryabov A.A., Ptitsyn S.O. Dynamic buckling and post buckling deformation of cylindrical shells. Problemy prochnosti i plastichnosti. 2018. V. 80, No. 2. P. 209–218. (In Russ.). URL: https://doi.org/10.32326/1814-9146-2018-80-2-209-218
  3. Vol'mir A.S. Ustoichivost' deformiruemykh sistem (Buckling of deformable systems). Moscow: Nauka. Glavnaya redaktsiya fiziko-matematicheskoi literatury Publ., 1967. 984 p.
  4. Alfutov N.A. Osnovy rascheta na ustoichivost' uprugikh sistem (Buckling of elastic systems’ basic evaluation), Moscow: Mashinostroenie Publ., 1978. 311 p.
  5. Narayana Y.V., Gunda J.B., Reddy P.R., Markandeya R. Nonlinear buckling and post-buckling analysis of imperfect cylindrical shells subjected to axial compressive load. J. of Structural Engineering. 2015. V. 42, No. 2. P. 78–85.
  6. Bazhenov V.G., Nagornykh E.V., Samsonova D.A. Study of the influence of thickness and initial imperfections of the geometry of a cylindrical elastic-plastic shell with an elastic filler on the forms of loss of stability under external pressure. Materialy XIII Mezhdunarodnoi konferentsii po prikladnoi matematike i mekhanike v aerokosmicheskoi otrasli - AMMAI’2020. Moscow: Izd-vo MAI Publ., 2020. P. 257–259.
  7. Lokteva N.A., Serdyuk D.O., Skopintsev P.D., Fedotenkov G.V. Unsteady deformation of anisotropic circular cylindrical shell. Trudy MAI. 2021. No. 120. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=161423. DOI: 10.34759/trd-2021-120-09
  8. Korovaitseva E.A. Post-critical behavior of hyperelastic cylindrical shell. Trudy MAI. 2023. No. 131. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=175912. DOI: 10.34759/trd-2023-131-06
  9. Anisimov S.A. Numerical analysis of buckling under axial compression of orthogrid-stiffened cylindrical shells made of aluminum alloys. Trudy MAI. 2024. No. 134. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=178880
  10. Bazhenov V.G., Igonicheva E.V. Dynamic loss of stability and postcritical behavior of a thin cylindrical shell with initial imperfections under the action of an axial impact load. Prikladnye problemy prochnosti i plastichnosti. 1977. No. 6. P. 98–106. (In Russ.)
  11. Bazhenov V.G., Igonicheva E.V. Nonlinear analysis of non-axisymmetric buckling of cylindrical and conical shells under axial impact. Prikladnaya mekhanika. 1987. V. 23, No. 5. P. 10–17. (In Russ.)
  12. Li Z., Cao Y., Pan G. Influence of geometric imperfections on the axially loaded composite conical shells with and without cutout. AIP Advances. 2020. No. 10. DOI: 10.1063/5.0021103
  13. Speicher G., Saal H. Numerical calculation of limit loads for shells of revolution with particular regard to the applying equivalent initial imperfection. Buckling of Shell Structure, on Land, in the Sea, and in the Air. Elsevier Applied Science, London, 1991, P. 466–475.
  14. Papadopoulos V., Papadrakakis M. Finite element analysis of cylindrical panels with random initial imperfections. Journal of engineering mechanics. 2004. No. 130. P. 867–876. DOI: 10.1061/~ASCE!0733-9399~2004!130:8~867
  15. Hilburger M.W., Nemeth M.P., Starnes J.H. Shell buckling design criteria based on manufacturing imperfection signatures. AIAA Journal. 2006. No. 44 (3). P. 654–663. DOI: 10.2514/1.5429
  16. Bazhenov V.G., Lomunov V.K. Experimental and theoretical study of elastic-plastic buckling of cylindrical shells under axial impact. Prikladnaya mekhanika. 1983. V. 19, No. 6. P. 23–29. (In Russ.)
  17. Grigor'ev I.S., Meilikhova E.Z, Babichev A.P., Babushkina N.A., Bratkovskii A.M. et al. Fizicheskie velichiny (Physical quantities). Moscow: Energoizdat Publ., 1991. 1232 p.
  18. Zienkiewicz O.C., Taylor R.L., Fox D.D. The finite element method for solid and structural mechanics. Butterworth-Heinemann Publ. GB, Oxford, 2014. 544 p.
  19. Belytschko T., Liu W.K., Moran B., Elkhodary K.I. Nonlinear Finite Elements for Continua and Structures. Wiley, UK, Chichester, 2014. 832 p.
  20. Obolenskii M.V., Voronkov O.V., Andropenkov S.S., Kurikov N.N. Numerical study of the influence of initial imperfection on the shape of postcritical deformation of a cylindrical shell under axial dynamic compression. Trudy XXIV Mezhdunarodnoi konferentsii «Matematicheskoe modelirovanie i superkomp'yuternye tekhnologii»: sbornik trudov. Nizhnii Novgorod: Izd-vo NNGU Publ., 2024. P. 120–125. 
  21. GOST 24642-81. Osnovnye normy vzaimozamenyaemosti. Dopuski formy i raspolozheniya poverkhnostei. Osnovnye terminy i opredeleniya (GOST 24642-81. Basic standards of interchangeability. Tolerances of shape and surface arrangement. Basic terms and definitions). Moscow: IPK Izdatel'stvo standartov Publ., 1981. 45 p.
  22. GOST 24643-81. Osnovnye normy vzaimozamenyaemosti. Dopuski formy i raspolozheniya poverkhnostei. Chislovye znacheniya (GOST 24643-81. Basic standards of interchangeability. Tolerances of shape and surface arrangement. Numerical values). Moscow: IPK Izdatel'stvo standartov Publ., 1981. 10 p.

mai.ru — informational site MAI

Copyright © 2000-2025 by MAI

Вход