Determination of vibration activity parameters of elastic bending rod systems with discrete-continuous mass distribution

Аuthors
1*, 1**, 1, 2***, 1****1. Irkutsk National Research Technical University, 83, Lermontov str., Irkutsk, 664074, Russia
2. Irkutsk State Transport University (IrGUPS), 15, Chernyshevsky str., Irkutsk, 664074, Russia
*e-mail: sobolevvi@ex.istu.edu
**e-mail: jovanny1@yandex.ru
***e-mail: tannikch@gmail.com
****e-mail: fts07@mail.ru
Abstract
The proposed work is devoted to the issues of formation and vibration analysis of dynamic system models containing elastically bending elements with distributed and concentrated inertial and rigidity parameters based on the harmonic element method. Modeling of dynamic processes occurring in systems with irregular distribution of region boundaries and irregular boundary conditions - structures of various purposes is carried out, as a rule, on the basis of mass discretization. The use of such methods is associated with known difficulties - discrete models are a priori approximate with limited capabilities for error estimation; dynamic parameters of the model depend on its dimension, as well as on the transformation methods; numerical results with arrays and matrices of large dimension complicate the possibility of analysis and evaluation of the calculation results. Calculations of structures for stationary dynamic effects based on the use of elements with distributed and concentrated masses make it possible to avoid the listed consequences of full discretization. However, such discrete-continuous (hybrid) dynamic models are associated with the need to stitch together heterogeneous elements at the formation stage and the inevitable difficulties of solving such "combined" systems containing ordinary differential equations and partial differential equations. The listed problems are resolved using the author's harmonic element method, which performs nodal stitching of heterogeneous elements and allows obtaining solutions in the form of oscillation amplitudes of the nodes of the combined model in certain required directions. In this case, all the properties of the finite element method are preserved, allowing the solution to be implemented under various boundary conditions and irregular distribution of physical and geometric parameters and boundaries of the computational domains. Nodal stitching of model elements resembles the approach used in the formation of finite element models, but unlike the finite element method intended for solving dynamics problems and containing frequency and inertial parameters in the equations. These features allow us to distinguish the proposed method into a separate class called the harmonic element method.
Keywords:
bending elements, concentrated masses, Euler-Bernoulli equations, computational modeling, dynamic equationsReferences
- Gubanov V.A., Zakharov V.V., Kovalenko A.N. Vvedenie v sistemnyi analiz (Introduction to systems analysis). Leningrad: Izd-vo Leningradskogo universiteta Publ., 1988. 232 p.
- Klir Dzh. Sistemologiya. Avtomatizatsiya resheniya sistemnykh (Systemology. Automation of system problem solving). Moscow: Radio i svyaz' Publ., 1990. 544 p.
- Poincare H. Les metodes nouvelles de la mechanicues celestre. V. I, II, III. – Paris, 1892, 1893, 1899.
- Butenin N.V., Neimark Yu.I., Fufaev N.A. Vvedenie v teoriyu nelineinykh kolebanii (Introduction to the theory of nonlinear oscillations). Moscow: Nauka Publ., 1987. 384 p.
- Sobolev V.I. Diskretno-kontinual'nye dinamicheskie sistemy i vibroizolyatsiya promyshlennykh grokhotov (Discrete-continuous dynamic systems and vibration isolation of industrial screens). Irkutsk: Izd-vo IrGTU Publ., 2002. 202 p.
- Sobolev V.I., Chernigovskaya T.N. Method of harmonic element in stationary dynamic process modeling. Vestnik Vostochno-Sibirskogo gosudarstvennogo tekhnologicheskogo universiteta. 2010. No. 1. P. 43-51. (In Russ.)
- Sobolev V.I., Chernigovskaya T.N. Construction of a rectangular harmonic element for modeling vibrations of a thin plate. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie. 2007. No. 16. P. 28-32. (In Russ.)
- Gaskin V.V., Snitko A.N., Sobolev V.I. Dinamika i seismostoikost' zdanii i sooruzhenii (Dynamics and seismic resistance of buildings and structures). Irkutsk: Izd-vo Irkutskogo universiteta Publ., 1992. 216 p.
- Klaf R., Dzh. Penzien. Dinamika sooruzhenii (Dynamics of structures). Moscow: Stroiizdat Publ., 1979. 319 p.
- Gal'perin I. Vvedenie v teoriyu obobshchennykh funktsii (Introduction to the theory of generalized functions). Moscow: MIAN Publ., 1954. 64 p.
- Akhiezer N.I. Lektsii po teorii approksimatsii (Lectures on approximation theory). Moscow: Nauka Publ., 1965. 408 p.
- Bernshtein S.N. Ekstremal'nye svoistva polinomov i nailuchshee priblizhenie nepreryvnykh funktsii odnoi veshchestvennoi peremennoi. CH. 1. (Extremal properties of polynomials and the best approximation of continuous functions of one real variable. Part 1). Leningrad-Moscow: ONTI NKTP SSSR Publ., 1937. 203 p.
- Galiev K.S., Gordon L.A., Rozin L.A. On the construction of a universal stiffness matrix in the finite element method. Izvestiya VNII gidrotekhniki. 1974. V. 105, P. 174-188. (In Russ.)
- Petryakov V.B. Konstruirovanie radioelektronnoi apparatury (Design of electronic equipment). Moscow: Sovetskoe radio Publ., 1969. 118 p.
- Devenport Dzh., Sire I., Turn'e E. Komp'yuternaya algebra (Computer algebra). Moscow: Mir Publ., 1991. 352 p.
- Forrester Dzh. Osnovy kibernetiki predpriyatiya (industrial'naya dinamika) (Fundamentals of Enterprise Cybernetics (Industrial Dynamics)), Moscow: Progress Publ., 1971. 340 p.
- Khayasi T. Vynuzhdennye kolebaniya v nelineinykh sistemakh (Forced Oscillations in Nonlinear Systems). Moscow: Izd-vo inostrannoi literatury Publ., 1957. 204 p.
- Airapetov E.L., Genkin M.D. Primenenie EVM dlya rascheta mnogosvyaznykh sistem metodom dinamicheskoi zhestkosti (Application of Computers for Calculating Multiconnected Systems by the Dynamic Stiffness Method). Moscow: Nauka Publ., 1975. P. 42-47.
- Koloushek V. Dinamika stroitel'nykh konstruktsii (Dynamics of Building Structures), Moscow: Izdatel'stvo literatury po stroitel'stvu Publ., 1965. 632 p.
- Kondratenko L.A., Mironova L.I. Modeling the dynamics of multiply connected nonlinear mechanical systems using a new numerical method. Trudy MAI. 2024. No. 135. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=179678
- Eliseev A.V., Kuznetsov N.K., Mironov A.S. Energy characteristics in the evaluation of elastic and lever ties in the dyad of a mechanical oscillatory system. Trudy MAI. 2024. No. 135. (In Russ.). URL: https://trudymai.ru/ eng/published.php?ID=179676
- Korneichuk N.P., Lichun A.A., Doronin V.G. Approksimatsiya s ogranicheniyami (Approximation with restrictions). Kiev: Naukova Dumka Publ., 1988. 249 p.
Download