Theory of rods (plates) constructed for non-classical models of a porous medium in deformable body mechanics


Аuthors

Egorova M. S.*, Kalyagin M. Y.**, Rabinsky L. N.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: egorovams@mai.ru
**e-mail: mukalyagin@yandex.ru

Abstract

The article presents a mathematical formulation for a generalized model of a gradient porous medium. Variational formulations of the traditional "incorrect" and variational "correct" theory of cylindrical bending of porous plates are considered as applied models. The "incorrect" theory differs from the "correct" one in that in it the classical cylindrical stiffness is corrected due to gradient stiffness, while in the correct formulation of the generalized theory of a porous medium there is no such effect. An original applied model belonging to the class of Timoshenko models is also proposed.
The development of accurate deformation models for thin-walled structures is critical in aerospace engineering, microelectronics, and biomechanics, where scale effects caused by material microstructure significantly affect mechanical properties. 
A generalized gradient model of a porous medium is proposed, combining Mindlin’s and Toupin’s approaches. It accounts for gradients of compatible/incompatible deformations and introduces algebraic porosity. 
Equilibrium equations and boundary conditions for the generalized model are derived, covering classical elasticity, algebraic porosity, and gradient theories as special cases. 
Correct variational formulations for cylindrical bending of plates are developed, eliminating singularities at small thicknesses. 
Traditional "incorrect" models distort bending stiffness via gradient terms, while the proposed formulation preserves physical adequacy. 
The model overcomes limitations of analogs, ensuring precise description of scale effects. Results are applicable to microstructured components in aerospace systems.

Keywords:

gradient models, porous medium, variational formulations, scale effects, Mindlin and Toupin models, cylindrical bending, correct and incorrect theories, pore defects, algebraic porosity

References

  1. Cowin S.C., Nunziato J.W. Linear elastic materials with voids. Journal of Elasticity. 1983. No. 13. P. 125–147. DOI: 10.1007/BF00041230
  2. Mindlin R.D. Micro-structure in linear elasticity. Archive for Rational Mechanics and Analysis. 1964. V. 16, P. 51-78. URL: https://doi.org/10.1007/BF00248490
  3. Belov P.A., Lurie S.A. A continuum model of microheterogeneous media. Journal of Applied Mathematics and Mechanics. 2009. No. 73 (5). P. 599–608. URL: https://doi.org/10.1016/j.jappmathmech.2009.11.013 
  4. Shalimov A.S., Tashkinov M.A. Modeling of deformation and fracture of porous media taking into account their morphological composition. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Mekhanika. 2020. No. 4. P. 175-187. DOI: 10.15593/perm.mech/2020.4.15 
  5. Eremeyev V.A. On effective properties of materials at micro- and nano-scale. Mechanics Research Communications. 2018. No. 93. P. 47–53. DOI: 10.1007/978-3-319-21494-8_3 
  6. Serdyuk D.O. Fundamental solutions to the transient dynamics of an anisotropic cylindrical Timoshenko shell. Trudy MAI. 2024. No. 139. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=183453 
  7. Prokudin O.A., Solyaev Yu.O., Babaitsev A.V., Artem'ev A.V., Korobkov M.A. Dynamic characteristics of three-layer beams with load-bearing layers made of alumino-glass plastic. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Mekhanika. 2020. No. 4. P. 260-270. (In Russ.). DOI: 10.15593/perm.mech/2020.4.22 
  8. Martirosov M.I., Khomchenko A.V. Computational and experimental study of the behavior of a flat reinforced carbon fiber panel on impact. Trudy MAI. 2022. No. 126. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=168990. DOI: 10.34759/trd-2022-126-04 
  9. Kalyagin M.Yu. Modeling of aerial vehicles instrument bays by porous-composite impactors. Trudy MAI. 2018. No. 98. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=90156
  10. Dudchenko A.A., Basharov E.A. Determination heating in layers of the rubber multilayer beem of the type torsion under cycle loading. Trudy MAI. 2011. No. 42. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=24261
  11. Tashkinov M.A., Shalimov A.S. Modeling of the effect of microscale morphological parameters on the deformation behavior of porous materials with a metal matrix. Fizicheskaya mezomekhanika. 2021. No. 5. P. 130-137. (In Russ.). DOI: 10.24412/1683-805X-2021-5-130-137
  12. Nguen N.Kh., Tarlakovskii D.V. The unsteady influence-functions for the study of above the surface in a porous elastic half-plane object. Trudy MAI. 2012. No. 53. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=29269
  13. Lur'e S.A., Shramko K.K. On the correctness condition in boundary value problems of gradient elasticity theory. Trudy MAI. 2021. No. 120. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=161414. DOI: 10.34759/trd-2021-120-02
  14. Babaitsev A.V., Burtsev A.Yu., Rabinskii L.N., Solyaev Yu.O. A technique for approximate stresses evaluation in a thick-wall composite axisymmetric structure. Trudy MAI. 2019. No. 107. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=107879
  15. Solyaev Y., Babaytsev A. Direct observation of plastic shear strain concentration in the thick GLARE laminates under bending loading. Composites Part B: Engineering. 2021. V. 224, P. 109145. DOI: 10.1016/j.compositesb.2021.109145
  16. Gusev A.A., Lurie S.A. Symmetry conditions in strain gradient elasticity. Mathematics and Mechanics of Solids. 2017. No. 22 (4). P. 683-691. DOI: 10.1177/1081286515606960 
  17. Lurie S.A. et al. Dilatation gradient elasticity theory. European Journal of Mechanics-A/Solids. 2021. V. 88, P. 104258. DOI: 10.1016/j.euromechsol.2021.104258
  18. Lur'e S.A., Dudchenko A.A., Nguen D.K. Gradient model of termoelasticity for laminated composite structures. Trudy MAI. 2014. No. 75. (In Russ.). URL: http://trudymai.ru/eng/published.php?ID=49674
  19. Solyaev Y., Lurie S., Korolenko V. Three-phase model of particulate composites in second gradient elasticity. European Journal of Mechanics-A/Solids. 2019. V. 78, P. 103853. DOI: 10.1016/j.euromechsol.2019.103853
  20. Vasil'ev V.V., Lur'e S.A., Salov V.A. Estimation of the strength of plates with cracks based on the maximum stress criterion in a scale-dependent generalized theory of elasticity.
  21. Fizicheskaya mezomekhanika. 2018. V. 21, No. 4. P. 5-12. (In Russ.). DOI: 10.24411/1683-805X-2018-14001


Download

mai.ru — informational site MAI

Copyright © 2000-2025 by MAI

Вход