Dynamics of angular motion of spacecraft with dissipative damper


Аuthors

Morina Z. V.

Samara National Research University named after Academician S.P. Korolev, Moskovskoe shosse, 34, Samara, Russia

e-mail: morina.zv@ssau.ru

Abstract

This research paper describes a study of the dynamics of angular motion of a CubeSat-3U nanosatellite equipped with an internal dissipative damper located in its central module. The main goal of the research is to analyze and compare the effectiveness of two types of dampers - gravitational and magnetic - designed for passive stabilization of the satellite orientation by reducing its angular momentum due to dissipation of internal energy.
A gravity damper works by means of fluid-filled viscous friction between an inner spherical body and a spherical hollow. During orbital motion of the satellite, the relative motion of the damper and the satellite body results in resisting forces that gradually dissipate the kinetic energy of rotation. As a result of this process, the orientation of the satellite is aligned relative to the local vertical, which provides passive stabilization through the use of gravitational forces.
The magnetic damper, in turn, utilizes the interaction of the satellite's own magnetic dipole moment with the Earth's magnetic field. The resulting magnetic moment gradually reduces the satellite's angular velocity, equalizing its orientation along the magnetic field lines.
For comparative analysis of the dampers' performance, a mathematical model was developed that combines a kinematic and dynamic model of the satellite motion. The kinematic model describes the satellite orientation change using Euler angles, while the dynamic model is derived from the dynamic Euler equations for a solid body with members describing gravitational and magnetic moments.
The work also explores the combined use of gravity and magnetic dampers. The simulation results demonstrate that both types of dampers can provide gradual stabilization of the satellite, but their combined use accelerates the damping process.
The effectiveness of each type of damper depends on orbital parameters such as altitude and inclination. In circular equatorial orbits, the gravitational and magnetic moments operate in concert, contributing to the combined stabilizing effect. In inclined orbits, the forces acting on the dampers can interfere with damping, so choosing the optimal configuration of the dampers depends on mission-specific considerations.
The results of this work can be useful in the design of passive orientation systems for nanosatellites. The inclusion of one or both types of dampers allows to increase the reliability of the orientation systems and provide effective orientation maintenance throughout the entire life of the spacecraft. This is particularly relevant for low-budget small satellite missions, where the use of active control systems may not be feasible due to mass, energy, and complexity limitations.

Keywords:

kinetic momentum, gravitational damper, spherical damper, magnetic damper, angular motion, motion dynamics, dissipative method

References

  1. Kravchuk S.V., Shatskii M.A., Kovalev A.Yu. Design principles of control and management system for satellites usage. Trudy MAI. 2010. No. 38. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=14531
  2. Sedel'nikov A.V., Nikolaeva A.S., Serdakova V.V. Assessing the feasibility of small spacecraft angular velocity requirements taking into account temperature shock. Trudy MAI. 2023. No. 132. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=176836
  3. Chernous'ko F.L. On the motion of a solid body containing a spherical damper. Prikladnaya mekhanika i tekhnicheskaya fizika. 1968. V. 9, No. 1. P. 73-79. (In Russ.)
  4. Chernous'ko F.L. Dvizhenie tverdogo tela s polostyami, soderzhashchimi vyazkuyu zhidkost' (Motion of a solid body with cavities containing viscous liquid). Moscow: [b. i.], 1968. 230 p. (In Russ.)
  5. Chernous'ko F.L. Motion of a solid body with cavities filled with viscous fluid at small Reynolds numbers. Zhurnal vychislitel'noi matematiki i matematicheskoi fiziki. 1965. V. 5, No. 6. P. 1049-1070. (In Russ.)
  6. Chernous'ko F.L., Akulenko L.D., Leshchenko D.D. Evolyutsiya dvizhenii tverdogo tela otnositel'no tsentra mass (Evolution of motions of a rigid body about its center of mass). Moskva-Izhevsk: Institut komp'yuternykh issledovanii Publ., 2015. P. 175-202.
  7. Amel'kin N.I., Kholoshchak V.V. Stability of the steady rotations of a satellite with internal damping in a central gravitational field. Prikladnaya matematika i mekhanika. 2017. V. 81, No. 2. P. 123-136. (In Russ.)
  8. Kholoshchak V.V. Dynamics of rotational motion of a satellite with a damper in the central gravitational field. Trudy Moskovskogo fiziko-tekhnicheskogo instituta. 2017. V. 9, No. 4 (36). P. 106-119. (In Russ.)
  9. Amel'kin N.I., Kholoshchak V.V. Rotational motion of a non-symmetrical satellite with a damper in a circular orbit. Prikladnaya matematika i mekhanika. 2019. V. 83, No. 1. P. 16-31. (In Russ.)
  10. Doroshin A.V. Gravitational dampers for unloading angular momentum of nanosatellites. Advances in Nonlinear Dynamics: Proceedings of the Second International Nonlinear Dynamics Conference (NODYCON 2021). V. 1. Cham: Springer International Publishing, 2022. P. 257-266. DOI: 10.1007/978-3-030-81162-4_23
  11. Pang W.J. et al. Boom of the CubeSat: a statistic survey of CubeSats launch in 2003–2015. Proceedings of the 67th international astronautical congress (IAC), Guadalajara, Mexico. 2016. P. 26-30.
  12. Twiggs R.J. Space system developments at Stanford University: from launch experience of microsatellites to the proposed future use of picosatellites. Small Payloads in Space. SPIE, 2000. V. 4136, P. 79-86. DOI: 10.1117/12.406646
  13. Gimranov Z.I. Magnetic pulse test-bed for the controllable separation of the nanosatellite. Trudy MAI. 2013. No. 68. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=41766
  14. Barinova E.V. et al. Peculiarities of dynamics and some issues of angular motion control of small nanoclass spacecraft in low orbits. Giroskopiya i navigatsiya. 2023. V. 31, No. 3. P. 3-35. (In Russ.)
  15. Aslanov V.S., Doroshin A.V. The dynamics of small satellites with the three-axial gravitational damper. Prikladnaya matematika i mekhanika. 2023. V. 87, No. 5. P. 729–741. (In Russ.)
  16. Ishlinskii A.Yu. Activities of Mikhail A. Lavrentiev in the Academy of Sciences of the Ukrainian SSR. Prikladnaya mekhanika i tekhnicheskaya fizika. 1960. No. 3. P. 16-19. (In Russ.)
  17. Lavrent'ev M.A. Problemy gidrodinamiki i ikh matematicheskie modeli (Problems of hydrodynamics and their mathematical models). Moscow: Nauka Publ., 1973. 416 p.
  18. Morina Z.V. Dynamics of angular motion of spacecraft with dissipative damper. XXVII Mezhdunarodnaya nauchno-prakticheskaya konferentsiya, posvyashchennaya pamyati general'nogo konstruktora raketno-kosmicheskikh sistem akademika M.F. Reshetneva: tezisy dokladov. Krasnoyarsk: Izd-vo Sibirskii gosudarstvennyi universitet nauki i tekhnologii im. akadem. M.F. Reshetneva Publ., 2023. P. 405-407.
  19. Morina Z.V., Doroshin A.V. Dynamics of angular motion of spacecraft with dissipative damper. XVII Korolevskie chteniya: Vserosiiskaya molodezhnaya nauchnaya konferentsiya s mezhdunarodnym uchastiem, posvyashchennaya 35-letiyu so dnya pervogo poleta MTKS" Energiya–Buran": sbornik trudov. Samara: Samarskii natsional'nyi issledovatel'skii universitet imeni akademika S.P. Koroleva Publ., 2023. P. 118-119.
  20. Morina Z.V., Doroshin A.V. Dynamics of angular motion of spacecraft with magnetic or gravity damper. XLIX Samarskaya oblastnaya studencheskaya nauchnaya konferentsiya: tezisy dokladov. Saint-Petersburg: Izd-vo Eko-Vektor Publ., 2023. P. 340-341.
  21. Markeev A.P. Teoreticheskaya mekhanika (Theoretical mechanics). Moscow: Izd-vo CheRo Publ., 1999. 572 p.
  22. Morozov V.M., Kalenova V.I. Satellite control using magnetic moments: controllability and stabilization algorithms. Kosmicheskie issledovaniya. 2020. V. 58, No. 3. P. 199-207. (In Russ.)
  23. Morozov V.M., Kalenova V.I., Rak M.G. On stabilization of satellite regular precessions by means of magnetic moments. Prikladnaya matematika i mekhanika. 2021. V. 85, No. 4. P. 436-453. (In Russ.)
  24. Davis L.K. Motion damper. U.S. Patent No. 3,399,317. Washington, DC: U.S. Patent and Trademark Office. 1968.
  25. Wertz J.R. (ed.). Spacecraft attitude determination and control. Springer Science & Business Media, 1978. 858 p.
  26. Suvorov M.A., Kolomytsev I.V. Control of spacecraft on highly elliptical orbit in given borders on orientation factors. Trudy MAI. 2011. No. 45. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=25516
  27. Pankratov I.A. The fastest reorientation of the spacecraft's circular orbit plane. Trudy MAI. 2020. No. 113. (In Russ.). URL: https://trudymai.ru/published.php?ID=118184. DOI: 10.34759/trd-2020-113-16
  28. Ovchinnikov M.Yu., Pen'kov V.I., Roldugin D.S. Active magnetic attitude control system providing three-axis inertial attitude. Preprinty Instituta prikladnoi matematiki im. M.V. Keldysha. 2013. No. 74. P. 1-24. (In Russ.).
  29. Ivanov D.S. et al. Calibration of Sensors for Determination of Orientation of a Small Spacecraft. Preprinty Instituta prikladnoi matematiki im. M.V. Keldysha. 2010. No. 28. P. 1-30. (In Russ.).


Download

mai.ru — informational site MAI

Copyright © 2000-2025 by MAI

Вход