A software package for modeling the functioning of a multi-satellite orbital constellation

Аuthors
*, *,Mlitary spaсe Aсademy named after A.F. Mozhaisky, 197198, St. Petersburg, Zhdanovskaya St., 13
*e-mail: vka@mil.ru
Abstract
The article discusses the key aspects of the development of a software package for modeling the functioning of a multi-satellite orbital constellation. Modern space groupings, consisting of many satellites in various orbits, play an important role in providing global and regional communications, navigation, Earth monitoring, as well as other applied tasks. The development of comprehensive software for modeling a multi-satellite orbital constellation makes it possible to study issues related to the management, coordination and reliability of such systems.
The main task of the work is to create a software package with support for a multi-agent approach that allows you to simulate the interaction of individual satellites in a grouping, analyze their behavior, and evaluate the effectiveness of various scenarios. This approach allows us to take into account the multilevel structure of system interactions, starting from the model of individual satellites as independent agents to their complex interaction as part of a group.
The architecture of the software package is based on an object-oriented approach, which allows you to structure the model into logically separated components. The multi-agent model defines the logic of interaction of satellites in a grouping, which takes into account their possible states, information exchange and various actions depending on current tasks.
The software implementation of the complex uses the capabilities of the Python language and related libraries to create modeling and data processing interfaces. In particular, the PyOpenGL library was used to visualize the simulation results, which provides support for three-dimensional graphics in Python.
The key feature of the proposed software package is the possibility of detailed scenario analysis based on dynamic modeling and analysis of data received from agents of the satellite system. In addition, the complex supports integration with other tools and data formats, allowing the user to import real-world orbital parameters and other external data needed to build more accurate models.
Thus, the developed software package is a multifunctional tool that can be used both in scientific research and in industry. The introduction of an object and a multi-agent model, support for 3D visualization and a user-friendly interface for configuring and analyzing simulation results makes it a powerful tool for studying and optimizing satellite orbital groupings.
Keywords:
modeling software package, multi-agent model, multi-satellite orbital grouping, operational efficiencyReferences
- Vasil'ev V.N. Sistemy orientatsii kosmicheskikh apparatov (Spacecraft Orientation Systems). Moscow: NPP VNIIEM Publ., 2009. 310 p.
- Volgin D.A. Prospects for the Development of Small Spacecraft. Molodoi uchenyi. 2023. No. 40 (487). P. 11-15. (In Russ.)
- Zav'yalova N.A., Negodyaev S.S., Kuznetsov A.A. et al. Software package "Integral" for modeling space constellations and spacecraft. Kosmicheskie apparaty i tekhnologii. 2023. V. 7, No. 2 (44). P. 162-170. (In Russ.). DOI: 10.26732/j.st.2023.2.09
- Gorodetskii V.I., Skobelev P.O. Multi-agent technologies for industrial applications: reality and prospects. Trudy SPIIRAN. 2017. No. 6 (55). P. 11-45. (In Russ.)
- Gorodetskii V.I., Bukhvalov O.L., Skobelev P.O. Current state and prospects of industrial applications of multi-agent systems. Upravlenie bol'shimi sistemami: sbornik trudov. 2017. No. 66. P. 94-157. (In Russ.)
- GOST R 57700.37–2021. Komp'yuternye modeli i modelirovanie. Tsifrovye dvoiniki izdelii. Obshchie polozheniya (GOST R 57700.37–2021. Computer models and modeling. Digital twins of products. General provisions). Moscow: Russian Standardization Institute Publ., 2021. 16 p.
- Gritsenko A.A. Experience of using the Albatross CAD system in the tasks of analysis, calculation and modeling of various satellite systems. XI Mezhdunarodnaya konferentsiya «Satellite Russia & CIS: Tsifrovye uslugi na vsekh orbitakh». 2019. URL: http://www.spacecenter.ru/Resurses/2019/5_andrey_gritsenko_sc_information_space_center_severnaya_cor...
- Gusev P.Yu. Planning automation of production process at aircraft building enterprise employing a digital replica. Trudy MAI. 2018. No. 103. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=101190
- Karsaev O.V., Sokolov B.V. Simulation modeling of multi-satellite orbital constellations of Earth remote sensing. 11- Vserossiiskaya nauchno-prakticheskaya konferentsiya po imitatsionnomu modelirovaniyu i ego primeneniyu v nauke i promyshlennosti «Imitatsionnoe modelirovanie. Teoriya i praktika» IMMOD-2023: sbornik trudov. Kazan': Izd-vo AN RT Publ., 2023. P. 357-366.
- Klyushnikov V.Yu. Mini-satellites gather in flocks. URL: https:// www.ng.ru/science/2020-01-21/9_7773_satellites.html
- Kuznetsova S.V., Semenov A.S. Digital twins in the aerospace industry: an object-oriented approach. Trudy MAI. 2023. No. 131. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=175930. DOI: 10.34759/trd-2023-131-24
- Potyupkin A.Yu. Modeling the functioning of multi-satellite orbital constellations. VIII Mezhdunarodnaya konferentsiya i molodezhnaya shkola «Informatsionnye tekhnologii i nanotekhnologii» (ITNT-2022). (In Russ.). URL: https://itnt-conf.org/images/docs/2022/plenary/25(09-30)Potyupkin.pdf
- Potyupkin A.Yu., Panteleimonov I.N., Timofeev Yu.A., Volkov S.A. Control of multi-satellite orbital constellations. Raketno-kosmicheskoe priborostroenie i informatsionnye sistemy. 2020. V. 7, No. 3. P. 61–70. (In Russ.). DOI: 10.30894/issn2409-0239.2020.7.3.61.70
- Privalov A.E. Unified software platform for develop of multi-agent models of orbital spacecrafts constellation. Trudy MAI. 2022. No. 123. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=165498. (In Russ.). DOI: 10.34759/trd-2022-123-22
- Privalov A.E., Smirnov A.V., Tokarev M.S. Concept of multi-satellite systems control using digital twins. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki. 2023. No. 11. P. 245-250. (In Russ.). DOI: 10.24412/2071-6168-2023-11-245-246.
- Privalov A.E., Fedyaev V.V., Bugaichenko P.Yu. Application of multi-agent technologies for constructing simulation models of multi-satellite orbital constellations for Earth remote sensing. Imitatsionnoe modelirovanie sistem voennogo naznacheniya, deistvii voisk i protsessov ikh obespecheniya «IMSVN-2020»: trudy konferentsii. Saint-Petersburg: Voennaya akademiya material'no-tekhnicheskogo obespecheniya imeni generala armii A.V. Khruleva Publ., 2020. P. 219-228.
- Skobelev P.O., Skirmunt V.K., Simonova E.V. et al. Planning the Targeted Use of a Constellation of Earth Remote Sensing Spacecraft Using Multi-agent Technologies. Izvestiya YUFU. Tekhnicheskie nauki. 2015. No. 10 (171). P. 60-70. (In Russ.)
- Shchekochikhin O.V. Modern trends in managing cyber-physical systems based on digital twins. Informatsionno-ekonomicheskie aspekty standartizatsii i tekhnicheskogo regulirovaniya. 2021. No. 5 (63). P. 33–37. (In Russ.)
- Cai Y., Starly B., Cohen P., Lee Y-S. Sensor data and information fusion to construct digital-twins virtual machine tools for cyber-physical manufacturing. Procedia Manufacturing. 2017. No 2. P. 1031–1042. DOI: 10.1016/j.promfg.2017.07.094
- Christofi N., Pucel X. A Novel Methodology to Construct Digital Twin Models for Spacecraft Operations Using Fault and Behaviour Trees. 25th International Conference on Model Driven Engineering Languages and Systems (MODELS ’22 Companion), October 23–28, 2022, Montreal, QC, Canada. ACM, New York, NY, USA, 8 p. DOI: 10.1145/3550356.3561550
- Glaessgen E.H., Stargel D.S. The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles. Paper for the 53rd Structures, Structural Dynamics, and Materials Conference: Special Session on the Digital Twin. 2012. URL: https://ntrs.nasa.gov/citations/20120008178
- Tao F., Qi Q., Wang L., Nee A.Y.C. Digital Twins and Cyber–Physical Systems toward Smart Manufacturing and Industry 4.0: Correlation and Comparison. Engineering. 2019. V. 5, Issue 4. P. 653–661.
Download