Increasing the performance of photovoltaic converters using high-tech cooling systems


Аuthors

AbdAli A. L.1*, Kuvshinov V. V.2**, Guseva E. V.2***, Koneva S. A.2****, Tsaloev V. M.2*****

1. University of Kufa,
2. Sevastopol State Technical University, Sevastopol, Russia

*e-mail: laith_2210@yahoo.com
**e-mail: кuvshinov.vladimir@gmail.com
***e-mail: alenaalena73@mail.ru
****e-mail: sakoneva@mail.sevsu.ru
*****e-mail: vmtsaloev@mail.sevsu.ru

Abstract

Silicon photovoltaic converters are used in many industries and manufacturing. Reduction in their efficiency due to overheating is a big problem for ensuring reliable operation of high-tech equipment. Since the operating temperature affects the electrical efficiency of the solar cell, adequate and effective cooling is necessary for its good operation. Devices with high thermal efficiency, in which heat is transferred from the cell to the external environment through pulsating heat pipes, can be used to provide a suitable operating environment for the photovoltaic cell at low temperature. This process generates a significant amount of energy and maximizes the efficiency of the photovoltaic unit. In this study, we use copper finned pulsating heat pipes to sufficiently cool the cell and operate it at an optimal temperature, which improves the efficiency of the solar cell. Copper is used for pulsating heat pipes due to its high conductivity, which improves the performance. According to the study, pulsating heat pipes are the best choice for cooling the solar cell, which improves both its efficiency and the amount of energy it generates. Therefore, it is essential to use cooling systems to control their operating temperature. Technologies for passive cooling that require less maintenance and don't use extra electricity can be a good choice. This paper compiles and compares the substantial work of researchers using passive cooling strategies. Finding a suitable cooling method in light of environmental or geographic factors will also be clarified by the investigation. The issues that have not yet been resolved are mentioned, and papers pertaining to each particular passive approach are examined.

Keywords:

photovoltaic panel, solar power plant, heat pipes

References

  1. Sharaf M., Yousef M.S., Huzayyin A.S. Review of cooling techniques used to enhance the efficiency of photovoltaic power systemsю Environmental science and pollution research. 2022. V. 29 (18), P. 26131-26159. DOI: 10.1007/s11356-022-18719-9
  2. Panda S., Gupta M., Panda B., Jena C., Nanda L., Pradhan A., Malvi C.S. A review on advanced cooling techniques for photovoltaic panel. Materials Today Proceedings. 2022. V. 62 (5), P. 6799-6803. DOI: 10.1016/j.matpr.2022.04.925
  3. Issa H.A., Abdali L.M., Velkin V.I. A stand-alone hybrid power system based on PV energy and hydrogen fuel cells with energy storage systems. MM Science Journal. 2024. DOI: 10.17973/MMSJ.2024_12_2024102
  4. Abdali L.M., Issa Kh.A., Al'-Maliki M.N., Kuvshinov V.V., Bekirov E.A. Design and study of operating modes of combined solar Wind installations to provide street lighting. Stroitel'stvo i tekhnogennaya bezopasnost'. 2022. No. 25 (77). P. 75-85. (In Russ.)
  5. Al–Maliki M.N., Soldan M., Issa H.A., Abdali L.M., Yakimovich B.A., Kobeticova H. The performance and advanced cooling techniques for photovoltaic solar panels. MM Science Journal. 2024. DOI: 10.17973/MMSJ.2024_11_2024055
  6. Siecker J., Kusakana K., Numbi E.B. A review of solar photovoltaic systems cooling technologies. Renewable and Sustainable Energy Reviews. 2017. V. 79, P. 192-203.
  7. Liu H.D., Lin C.H., Pai K.J., Lin Y.L. A novel photovoltaic system control strategies for improving hill climbing algorithm efficiencies in consideration of radian and load effect. Energy Conversion and Management. 2018. V. 165, P. 815-826. DOI: 10.1016/j.enconman.2018.03.081
  8. Cheboxarov V.V. An Offshore Wind-Power-Based Water Desalination Complex as a Response to an Emergency in Water Supply to Northern Crimea. Applied Solar Energy. 2019. V. 55, No. 4. P. 260-264. URL: https://doi.org/10.3103/S0003701X19040030
  9. Chandel S.S., Agarwal T. Review of cooling techniques using phase change materials for enhancing efficiency of photovoltaic power systems. Renewable and Sustainable Energy Reviews. 2017. V. 73, P. 1342-1351. DOI: 10.1016/j.rser.2017.02.001
  10. Issa Kh.A., Abdali L.M., Yakimovich B.A., Kuvshinov V.V., Morozova N.V., Fedotikova M.V. Comparison of the effectiveness of various methods for controlling the energy parameters of photovoltaic systems. Trudy MAI. 2023. No. 128. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=171405. DOI: 10.34759/trd-2023-128-17
  11. Alktranee M., Bencs P. Experimental comparative study on using different cooling techniques with photovoltaic modules. Journal of Thermal Analysis and Calorimetry. 2023. V. 148 (9), P. 3805-3817.
  12. Abdali L.M., Al'-Maliki M.N., Ali K.A., Yakimovich B.A., Korovkin N.V., Kuvshinov V.V., Solomennikova S.I. Using hybrid wind-solar power systems for the al-najaf city in Iraq. Vestnik IzhGTU imeni M.T. Kalashnikova. 2022. V. 25, No 3. P. 82-91. (In Russ.). DOI: 10.22213/2413-1172-2022-3-82-91
  13. Ahmed Mohmmed H., Anssari M.O.H. Electricity generation by using a hybrid system (photovoltaic and fuel cell). Journal of Engineering and Applied Sciences. 2019. No. 14. P. 4414-4418. DOI: 10.3923/jeasci.2019.4414.4418
  14. Ismail B., Taib S., Saad A.R.M. et al. Development of a single phase SPWM microcontroller-based inverter. Power and Energy Conference, PECon ’06, IEEE International. 2006. P. 437–440. DOI: 10.1109/PECON.2006.346691
  15. Layth M. Abd Ali, L.M. Ali, Q.A., Klačková I., Issa H.A., Yakimovich B.A., Kuvshimov V.V. Developing a thermal design for steam power plants by using concentrating solar power technologies for a clean environment. Acta Montanistica Slovaca. 2021. V. 26 (4), P. 773-783. DOI: 10.46544/AMS.v26i4.14
  16. Jiang L.L., Maskell D.L., Patra J.C. A novel ant colony optimization-based maximum power point tracking for photovoltaic systems under partially shaded conditions. Energy Build. 2013. V. 58, P. 227–236. DOI: 10.1016/j.enbuild.2012.12.001
  17. Abd Ali L.M., Al-Rufaee F.M., Kuvshinov V.V. et al. Study of Hybrid Wind—Solar Systems for the Iraq Energy Complex. Applied Solar Energy. 2020. V. 56, No. 4. P. 284–290. DOI: 10.3103/S0003701X20040027
  18. Koohestani S.S., Nižetić S., Santamouris M. Comparative review and evaluation of state-of-the-art photovoltaic cooling technologies. Journal of Cleaner Production. 2023. V. 406, P. 136953. DOI: 10.1016/j.jclepro.2023.136953
  19. Gharzi M., Arabhosseini A., Gholami Z., Rahmati M.H. Progressive cooling technologies of photovoltaic and concentrated photovoltaic modules: A review of fundamentals, thermal aspects, nanotechnology utilization and enhancing performance. Solar energy. 2020. V. 211, P. 117-146. DOI: 10.1016/j.solener.2020.09.048
  20. Pathak S.K., Sharma P.O., Goel V., Bhattacharyya S., Aybar H.Ş., Meyer J.P. A detailed review on the performance of photovoltaic/thermal system using various cooling methods. Sustainable Energy Technologies and Assessments. 2022. V. 51, P. 101844. DOI: 10.1016/j.seta.2021.101844
  21. B. Sanjay Gandhi, S. Sam Chelladurai, Dr. D. Senthil Kumaran. Process Optimization for Biodiesel Synthesis from Jatropha Curcas Oil. Distributed Generation and Alternative Energy Journal. 2011. V. 23, No. 4, P. 6-16. DOI: 10.1080/21563306.2011.10462201
  22. Teplikova V.I., Sentsov A.A., Nenashev V.A., Polyakov V.B. Analysis of the direction pattern of a flat multi-element active phased array. Trudy MAI. 2022. No. 125. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=168189. DOI: 10.34759/trd-2022-125-17
  23. Abdali L.M.A., Al'-Maliki M.N.K., Al' Bairmani A.G. et al. Analysis and selection of the optimal performance control method for solar cell dc converters. Intellektual'nye sistemy v proizvodstve. 2023. V. 21, No. 1. P. 125-137. (In Russ.). DOI: 10.22213/2410-9304-2023-1-125-137
  24. Ibragimov D.N., Berendakova A.V. Method of constructing and estimating asymptotic controllability sets of two-dimensional linear discrete systems with limited control. Trudy MAI. 2022. No. 126. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=169003. DOI: 10.34759/trd-2022-126-17
  25. Ghadikolaei S.S.C. Solar photovoltaic cells performance improvement by cooling technology: An overall review. International journal of hydrogen energy. 2021. V. 46 (18), P. 10939-10972.
  26. King D.L. Photovoltaic Module and Array Performance Characterization Methods for All System Operating Conditions. AIP Conference Proceedings. 1997. V. 394, P. 347–368. DOI: 10.1063/1.52852
  27. Himri Y., Malik A.S., Stambouli A.B. et al. Review and use of the Algerian renewable energy for sustainable development. Renewable and Sustainable Energy Reviews. 2009. V. 13, P. 1584–1591. DOI: 10.1016/j.rser.2008.09.007
  28. Abdali L.M., Yakimovich B.A., Syaktereva V.V., Kuvshinov V.V., Morozova N.V. Optimization of the automatic control system for the maximum power point for a wind-solar generating plant with energy storage. Trudy MAI. 2023. No. 129. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=173037. DOI: 10.34759/trd-2023-129-24
  29. Ali H.M. Recent advancements in PV cooling and efficiency enhancement integrating phase change materials based systems – A comprehensive review. Solar Energy. 2020. V. 197, P.163-198. DOI: 10.1016/j.solener.2019.11.075
  30. Volkov A.S. The development of simulation model of channel with burst error arrays. Trudy MAI. 2023. No. 128. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=171396. DOI: 10.34759/trd-2023-128-12
  31. Sokolov N.L. The analysis of combined methods of artificial satellite orbit formation. Trudy MAI. 2016. No. 87. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=69701



Download

mai.ru — informational site MAI

Copyright © 2000-2025 by MAI

Вход