Borshevetskiy S.A. Application of a new method for determining the location of additional supports for the Kirchhoff-Love cylindrical shell


Аuthors

Borshevetskiy S. A.

PJSC Yakovlev , 68, Leningradskiy prospect, Moscow, 125315, Russia

e-mail: wrdeww@bk.ru

Abstract

In early works, a new method was developed for the analytical determination of the location of a large number of concentrated hinged additional supports, based on a given condition of structural rigidity. The successful testing of the technique for rectangular plates using two motion models: Kirchhoff and Timoshenko, as well as the analytical form of solving the problem allowed us to continue the research in this direction.
The next step was to check the universal applicability of the new technique for curved shells of the Kirchhoff-Love model. As an object of research, a thin cylindrical shell is considered, pivotally supported along the edges, in an arbitrary place of which an arbitrary load acts. Additional ones are placed over the area of the cylinder in such a way that, under the action of an arbitrary load, the maximum deflection does not exceed a predetermined value. With regard to the thin Kirchhoff-Love shell, the maximum deflection should not exceed half the thickness.
The paper considers concentrated static and harmonic loads. The essence of the methodology and the approach to solving the problem remain the same in relation to the cylindrical shell.
As a result of calculations, the technique shows itself perfectly for curved shells: boundary conditions are met along the edges of the shell, in additional supports, and the condition of the joint (the unfolding of the shell into the plate) is also observed. Also, the resulting design of a single segment satisfies the established condition of rigidity and there is an additional margin of rigidity.

Keywords:

Kirchhoff-Love shell, cylindrical shell, structural rigidity, hinge support, plate, influence function

References

  1. Lizin V.T., Pyatkin V.A. Proektirovanie tonkostennykh konstruktsii (Design of thin-walled structures). Moscow: Mashinostroenie Publ., 1994. 384 p.
  2. Pechnikov V.P., Zakharov R.V., Tarasova A.V. Designing honeycomb shells for rocket fuel tanks accounting for plastic deformations. Inzhenernyi zhurnal: nauka i innovatsii. 2017. No. 11 (71). (In Russ.). DOI: 10.18698/2308-6033-2017-11-1703
  3. Firsanov V.V., Fam V.T. Stress-strain state of the spherical shell based on the refined theory. Trudy MAI. 2019. No. 105. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=104174
  4. Firsanov V.V., Vo A.Kh. The study of the longitudinally stiffened cylindrical shells under action of local load by the refined theory. Trudy MAI. 2018. No. 102. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=98866
  5. Borshevetskii S.A. Method for determining the location of additional supports of a simply supported Kirchhoff plate under random action. Trudy MAI. 2024. No. 135. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=179681
  6. Borshevetskii S.A., Lokteva N.A. Determination of the position of additional supports for a rectangular pivotally supported plate under non-stationary action on it. Materialy mezhdunarodnoi molodezhnoi nauchnoi konferentsii «XXV Tupolevskie chteniya (shkola molodykh uchenykh)». Vol. 2. Kazan': Izd-vo IP Sagieva A.R. Publ., 2021. P. 395-400.
  7. Borshevetskii S.A. Determining the location of additional supports of a pivotally supported plate under harmonic loading. Trudy MAI. 2023. No. 128. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=171384. DOI: 10.34759/trd-2023-128-03
  8. Gorshkov A.G., Medvedskii A.L., Rabinskii L.N., Tarlakovskii D.V. Volny v sploshnykh sredakh (Waves in continuous environments). Moscow: Fizmatlit Publ., 2004. 472 p.
  9. Serdyuk A.O., Serdyuk D.O., Fedotenkov G.V Unsteady bending function for an unlimited anisotropic plate. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya «Fiziko-matematicheskie nauki». 2021. Vol. 25, No. 1. P. 111-126. (In Russ.). DOI: 10.14498/vsgtu1793
  10. Lokteva N.A., Serdyuk D.O., Skopintsev P.D., Fedotenkov G.V. Unsteady deformation of anisotropic circular cylindrical shell. Trudy MAI. 2021. No. 120. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=161423. DOI: 10.34759/trd-2021-120-09
  11. Serdyuk A.O., Serdyuk D.O., Fedotenkov G.V., Hein T.Z. Green’s Function for an Unbounded Anisotropic Kirchhoff-Love Plate. Journal of the Balkan Tribological Association. 2021. Vol. 27, No. 5. P. 747-761. DOI: 10.5937/jaes0-28205
  12. Lokteva Natalia A., Serdyuk Dmitry O., Skopintsev Pavel D. Non-Stationary Influence Function for an Unbounded Anisotropic Kirchhoff-Love Shell. Journal of Applied Engineering Sciences. 2020. Vol. 18, No. 4. P. 737-744. DOI: 10.5937/jaes0-28205
  13. Levitskii D.Yu., Fedotenkov G.V. Non-stationary stress-strain state of the Timoshenko plate. Trudy MAI. 2022. No. 125. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=168157. DOI: 10.34759/trd-2022-125-05
  14. Ventsel' E.S., Dzhan-Temirov K.E., Trofimov A.M., Negol'sha E.V. Metod kompensiruyushchikh nagruzok v zadachakh teorii tonkikh plastinok i obolochek (Method of compensating loads in problems of the theory of thin plates and shells). Khar'kov: B. i. Publ., 1992. 92 p.
  15. Lokteva N.A., Serdyuk D.O., Skopintsev P.D. Compensating load method for the study of nonstationary perturbations in anisotropic cylindrical shells with local hinge supports. Materialy XII mezhdunarodnoi nauchno-prakticheskoi konferentsii, posvyashchennoi 160-letiyu Belorusskoi zheleznoi doroge «Problemy bezopasnosti na transporte» (Gomel', November 2022): sbornik trudov. Gomel': Belorusskii gosudarstvennyi universitet transporta Publ., 2022. P. 205-207.
  16. Koreneva E.B. Method of compensating loads for solving of a problem of unsymmetric bending of infinite ice slab with circular opening. International Journal for Computational Civil and Structural Engineering. 2017. Vol. 13, No. 2. P. 50–55. DOI: 10.22337/2587-9618-2017-13-2-50-55
  17. Koreneva E.B. Method of compensating loads for solving of anisotropic medium problems. International Journal for Computational Civil and Structural Engineering. 2018. Vol. 14, No. 1. P. 71–77. DOI: 10.22337/2587-9618-2018-14-1-71-77
  18. Lukashevich A.A. Teoriya rascheta plastin i obolochek (Theory of calculation of plates and shells: study allowance). Saint Petersburg: SPbGASU Publ., 2017. 127 p.
  19. Chernina V.S. Statika tonkostennykh obolochek vrashcheniya (Statics of thin walled shells of rotation). Moscow: Nauka Publ., 1968. 456 p.
  20. Korn G., Korn T. Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov (Handbook of Mathematics for Scientists and Engineers). Moscow: Nauka Publ., 1974. 832 p.
  21. Basov K.A. ANSYS: spravochnik pol'zovatelya (ANSYS: User’s guide). Moscow: DMK Press Publ., 2005. 640 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2025 by MAI

Вход