Behavior of flat panels with honeycomb filler in the presence of internal defects of various shapes

Аuthors
, , *Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
*e-mail: darina.dedova98@gmail.com
Abstract
The article investigates the behavior of flat three-layer panels with honeycomb core in the presence of internal defects of the delamination type of various shapes. This paper discusses round and elliptical shape defects that may occur during manufacturing or operational processes. The study examines the impact of dynamic loads, including impacts from an absolutely rigid striker and fragments of reinforced rubber, simulating the rupture of an aircraft tire. The finite element method was used to determine stress fields and the distribution of failure indices. The finite element model is made in the LS-DYNA frame complex. The research evaluates the mechanical response of panels made from different materials, specifically glass-reinforced honeycomb (SSP-1-2.5) and polymer-reinforced honeycomb (PSP-1-2.5-144), under both defective and defect-free conditions. The results reveal that the presence of defects significantly increases stress concentrations in the panels, with stresses in SSP-1-2.5 panels being 3% higher compared to PSP-1-2.5-144 panels. The failure indices, calculated using the LaRC04 (Langley Research Center) criterion for polymer composite materials (PCM), exceed unity in panels with defects, indicating the onset of failure in the upper cladding layer. In contrast, panels without defects exhibit no signs of failure, with stress levels being five times lower than in defective panels. Additionally, the study compares the behavior of panels with multiple elliptical defects, showing that stresses in PSP-1-2.5-144 panels are 11% higher than in SSP-1-2.5 panels under similar conditions. The research also highlights the dynamic response of the panels, including the rebound of rubber fragments and the displacement of the cladding layers.
Keywords:
finite element method, three-layer panels, honeycomb filler, defects, failure criteria, composite materialsReferences
- Lyubin Dzh., Dastin S. Aerokosmicheskoe primenenie kompozitov: Spravochnik po kompozitsionnym materialam v dvukh knigakh (Aerospace application of composites. Handbook of composite materials in two books). V. 2. Moscow: Mashinostroenie Publ., 1988. P. 538-566.
- Vol'mir A.S. Modern concepts of composite materials application in aircraft and engines. Mekhanika kompozitnykh materialov. 1985. No. 6. P. 1049-1056. (In Russ.)
- Aleksandrov A.Ya., Bryukker L.E., Kurshin L.M. Raschet trekhsloinykh panelei (Calculation of three-layer panels). Moscow: Oborongiz Publ., 1960. 270 p.
- Timoshenko S.P., Gere Dzh. Mekhanika materialov (Mechanics of materials). Moscow: Mir Publ., 1976. 669 p.
- Lyuttsau V.G., Makhutov N.A., Polilov A.N. Problems and prospects of application of composite materials in mechanical engineering. Mashinovedenie. 1988. No. 2. P. 3-11. (In Russ.)
- Vasil'ev V.V. Mekhanika konstruktsii iz kompozitsionnykh materialov (Mechanics of structures made of composite materials). Moscow: Mashinostroenie Publ., 1988. 272 p.
- Karpov Ya.S. Mekhanika kompozitsionnykh materialov (Mechanics of composite materials). Khar'kov: KHAI Publ., 1997. 200 p.
- Ishlinskii A.Yu., Chernyi G.G. Prikladnaya mekhanika kompozitov (Applied mechanics of composites). Moscow: Mir Publ., 1989. 360 p.
- Bolotin V.V. Damage and destruction of composites by type of stratification. Mekhanika kompozitnykh materialov. 1987. No. 3. P. 423-432. (In Russ.)
- Kollinz Dzh. Povrezhdenie materialov v konstruktsiyakh. Analiz, predskazanie, predotvrashchenie (Damage to materials in structures. Analysis, prediction, prevention). Moscow: Mir Publ., 1984. 624 p.
- Bolotin V.V. Defects such as delaminations in composite structures. Mekhanika kompozitnykh materialov. 1984. No. 2. P. 239-255. (In Russ.)
- Heslehurst R.B. Defects and Damage in Composite Materials and Structures. CRC Press, 2014. 154 p.
- Vorontsov A.N., Murzakhanov G.Kh., Shchugorev V.N. Destruction of structures made of composite materials by the type of stratification. Mekhanika kompozitnykh materialov. 1989. No. 6. P. 1007-1023. (In Russ.)
- Berlin A.A., Topolkaraev V.A., Bazhenov S.L. O vliyanii rassloeniya na protsess razrusheniya kompozitov. Fizicheskie aspekty prognozirovaniya razrusheniya i deformirovaniya geterogennykh materialov. (On the influence of delamination on the process of destruction of composites. Physical aspects of forecasting the destruction and deformation of heterogeneous materials). Leningrad: Fiziko-tekhnicheskii institut im. Ioffe Publ., 1987. P. 102-112.
- Grishin V.I., Dzyuba A.S., Dudar'kov Yu.I. Prochnost' i ustoichivost' elementov i soedinenii aviatsionnykh konstruktsii iz kompozitov (Strength and stability of elements and joints of aircraft structures made of composites). Moscow: Fizmatlit Publ., 2013. 272 p.
- Bezzametnov O.N., Mitryaikin V.I., Khaliulin V.I., Krotova E.V. Developing technique for impact action resistance determining of the aircraft parts from composites with honeycomb filler. Aerospace MAI Journal. 2020. V. 27, No. 3. P. 111-125. (In Russ.). DOI: 10.34759/vst-2020-3-111-125
- Dimitrienko Yu.I., Fedonyuk N.N., Gubareva E.A. Modeling and development of three-layer composite materials with honeycomb filler. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Seriya: Estestvennye nauki. 2014. No. 5 (56). P. 66-81. (In Russ.)
- Golovan V.I., Dudar'kov Yu.I., Levchenko E.A., Limonin M.V. Load bearing capacity of composite panels with in-service damages. Trudy MAI. 2020. No. 110. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=112830. DOI: 10.34759/trd-2020-110-5
- Tolstikov V.G., Pykhalov A.A. Stress-strain analysis of aircraft airframe parts from composite materials based on scanning and global-local problem solution. Trudy MAI. 2021. No. 118. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=158214. DOI: 10.34759/trd-2021-118-05
- Starovoitov E.I., Lokteva N.A., Starovoitova E.E. Deformation of orthotropick three-layer rectangular plate. Trudy MAI. 2014. No. 77. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=53018
- Medvedskii A.L., Martirosov M.I., Khomchenko A.V. Numerical analysis of layered composite panel behavior with interlaminar defects subject to dynamic loads. Stroitel'naya mekhanika inzhenernykh konstruktsii i sooruzhenii. 2019. V. 15, No. 2. P. 127-134. (In Russ.)
- Rabinskii L.N., Martirosov M.I., Dedova D.V., Khomchenko A.V. Investigation of dynamics of composite cylindrical panels with honeycomb filler with internal damage caused by jet of an aircraft engine. Nauchno-tekhnicheskii zhurnal «Stanki. Instrument». 2024. No. 4. P. 30-33. (In Russ.)
- Rabinskii L.N., Martirosov M.I., Dedova D.V., Khomchenko A.V. Behavior of three-layer panels with honeycomb core made of high-density polymer plastics with internal defects under the action of an engine jet. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki. 2024. No. 3. P. 298-303. (In Russ.)
- Zienkiewicz O.C., Taylor R.L. The finite element method. Vol. 1. Butterworth Heinemann. 2000. 708 p.
- Zenkevich O., Morgan K. Konechnye elementy i approksimatsiya (Finite elements and approximation). Moscow: Mir Publ., 1986. 312 p.
- Sigerlind L. Primenenie metoda konechnykh elementov (Application of the finite element method). Moscow: Mir Publ., 1979. 392 p.
- Sigerlind L.-J. Applied Finite Element Analysis, John Wiley and Sons. Inc. 1976. 195 p.
- Muizemnek A.Yu., Kartashova E.D. Mekhanika deformirovaniya i razrusheniya polimernykh sloistykh kompozitsionnykh materialov (Mechanics of deformation and destruction of polymer layered composite materials). Penza: Izd-vo PGU Publ., 2017. 56 p.
- Vu E.M. Fenomenologicheskie kriterii razrusheniya anizotropnykh sred. Kompozitsionnye materialy (Phenomenological criteria for the destruction of anisotropic media. Composite materials Volume 2: Mechanics of composite materials), Moscow: Mir Publ., 1978. P. 401-491.
- Sebaey T.A., Blanco N., Lopes C.S., Costa J. Numerical investigation to prevent crack jumping in Double Cantilever Beam test of multidirectional composite laminates. Composites Science and Technology. 2011. V. 71, P. 1587-1592. DOI: 10.1016/j.compscitech.2011.07.002
Download